983 resultados para Affinity chromatography purification
Resumo:
Recombinant tau protein is widely used to study the biochemical, cellular and pathological aspects of tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTPD-17). Pure tau in high yield is a requirement for in vitro evaluation of the protein's physiological and toxic functions. However, the preparation of recombinant tau is complicated by the protein's propensity to aggregate and form truncation products, necessitating the use of multiple, time-consuming purification methods. In this study, we investigated parameters that influence the expression of wild type and FTPD-17 pathogenic tau, in an attempt to identify ways to maximise expression yield. Here, we report on the influence of the choice of host strain, induction temperature, duration of induction, and media supplementation with glucose on tau expression in Escherichia coli. We also describe a straightforward process to purify the expressed tau proteins using immobilised metal affinity chromatography, with favourable yields over previous reports. An advantage of the described method is that it enables high yield production of functional oligomeric and monomeric tau, both of which can be used to study the biochemical, physiological and toxic properties of the protein.
Resumo:
The aim of this work is to obtain, purify and characterize biochemically a peroxidase from Copaifera langsdorffii leaves (COP). COP was obtained by acetone precipitation followed by ion-exchange chromatography. Purification yielded 3.5% of peroxidase with the purification factor of 46.86. The COP optimum pH is 6.0 and the temperature is 35 ºC. COP was stable in the pH range of 4.5 to 9.3 and at temperatures below 50.0 ºC. The apparent Michaelis-Menten constants (Km) for guaiacol and H2O2 were 0.04 mM and 0.39 mM respectively. Enzyme turnover was 0.075 s-1 for guaiacol and 0.28 s-1 for hydrogen peroxide. Copaifera langsdorffii leaves showed to be a rich source of active peroxidase (COP) during the whole year. COP could replace HRP, the most used peroxidase, in analytical determinations and treatment of industrial effluents at low cost.
Resumo:
Culture supernatant of Staphylococcus aureus 722 in 3% triptone plus 1% yeast extract was used for EEA purification, proceeding comparison between dye ligand Red A affinity chromatography and classic chromatography. The capture of SEA with Amberlite CG-50 allowed rapid enterotoxin concentration from the culture supernatant. However, the ratio of 15 mg of the resin to a total of 150 mg of the toxin satured the resin, giving only 10 to 30% of SEA recuperation from the supernatant. The elution of concentrated material throught the Red A column resulted in a recovery of 60,87% of the toxin, and required 76 hours, indicating advantage on classic chromatography. Ion exchange column plus gel filtration recovered only 6,5 % of the SEA, and required 114 hours to conclude the procedure. The eletrophoresis of purified SEA indicated high grade of toxin obtained from Red A column, with 90 % of purity, compared to 60 % of classic column.
Resumo:
Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 angstrom, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 angstrom resolution on a rotating-anode X-ray source.
Resumo:
Glycoproteins from the total vesicular fluid of Taenia crassiceps (VF-Tc) were prepared using three different purification methods, consisting of ConA-lectin affinity chromatography (ConA-Tc), preparative electrophoresis (SDS-PAGE) (14gp-Tc), and monoclonal antibody immunoaffinity chromatography (18/14-Tc). The complex composition represented by the VF-Tc and ConA-Tc antigens revealed peptides ranging from 101 - to 14-kDa and from 92- to 12-kDa, respectively. Immunoblotting using lectins confirmed glucose/mannose (glc/man) residues in the 18- and 14-kDa peptides, which are considered specific and immunodominant for the diagnosis of cysticercosis, and indicated that these fractions are glycoproteins. Serum antibodies from a patient with neurocysticercosis that reacted to the 14gp band from T. crassiceps (Tc) were eluted from immunoblotting membranes and showed reactivity to 14gp from Taenia solium. In order to determine the similar peptide sequence, the N-terminal amino acid was determined and analyzed with sequences available in public databases. This sequence revealed partial homology between T. crassiceps and T solium peptides. In addition, mass spectrometry along with theoretical M(r) and pI of the 14gp-Tc point suggested a close relationship to some peptides of a 150-kDa protein complex of the T solium previously described. The identification of these common immunogenic sites will contribute to future efforts to develop recombinant antigens and synthetic peptides for immunological assays. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Infections caused by Corynebacterium diphtheriae frequently induce situations in which very small doses of antigens injected intradermally can cause strong inflammatory reactions. This bacterium secretes the diphtheria toxin (DT), a virulence factor that can be lethal to the human organism at doses below 0.1 mu g/kg of body weight. The present work proposes alternative methods of DT purification using affinity chromatography and of DT detoxification through conjugating with the polymer methoxypolyethylene glycol activated (mPEG). Tests were performed to evaluate: the formation of edemas and the presence of dermonecrotic activity, in vitro cytotoxicity to Vero cells, the neutralizing activity of serum from guinea pigs immunized with the diphtheria toxoid inactivated with mPEG, and the immunogenic activity of the purified and modified toxin. The results indicated that purification with Blue Sepharose was an efficient method, yielding antigen purity equivalent to 2600 Lf/mg of protein nitrogen. The modification of the Purified Toxin with mPEG did not result in the formation of edema or necrosis although it was immunogenic and stimulated the formation of antibodies that could neutralize the Purified Toxin. The toxoid obtained from the purified toxin maintained its immunogenic characteristics, inducing antibodies with neutralizing activity; edema and necrosis were still observed, however. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Snake venom lectins have been studied in regard to their chemical structure and biological functions. However, little is known about lectins isolated from Bothrops atrox snake venom. We report here the isolation and partial functional and biochemical characterization of an acidic glycan-binding protein called galatrox from this venom. This lectin was purified by affinity chromatography using a lactosyl-sepharose column, and its homogeneity and molecular mass were evaluated by high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The purified galatrox was homogeneous and characterized as an acidic protein (pI 5.2) with a monomeric and dimeric molecular mass of 16.2 and 32.5 kDa, respectively. Alignment of N-terminal and internal amino acid sequences of galatrox indicated that this protein exhibits high homology to other C-type snake venom lectins. Galatrox showed optimal hemagglutinating activity at a concentration of 100 mu g/ml and this effect was drastically inhibited by lactose, ethylenediaminetetraacetic acid, and heating, which confirmed galatrox`s lectin activity. While galatrox failed to induce the same level of paw edema or mast cell degranulation as B. atrox crude venom, galatrox did alter cellular viability, which suggested that galatrox might contribute to venom toxicity by directly inducing cell death.
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
A xylanase was cloned from Aspergillus niveus and successfully expressed in Aspergillus nidulans (XAN). The full-length gene consisted of 890 bp and encoded 275 mature amino acids with a calculated mass of 31.3 kDa. The deduced amino acid sequence was highly homologous with the xylanase belonging to family 11 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by anion-exchange chromatography and gel filtration. The optima of pH and temperature for the recombinant enzyme were 5.0 and 65 degrees C, respectively. The thermal stability of the recombinant xylanase was extremely improved by covalent immobilization on glyoxyl agarose with 91.4% of residual activity after 180 min at 60 degrees C, on the other hand, the free xylanase showed a half-life of 9.9 min at the same temperature. Affinity chromatography on Concanavalin A- and Jacalin-agarose columns followed by SDS-PAGE analyses showed that the XAN has O- and N-glycans. XAN promotes hydrolysis of xylan resulting in xylobiose, xylotriose and xylotetraose. Intermediate degradation of xylan resulting in xylo-oligomers is appealing for functional foods as the beneficial effect of oligosaccharides on gastrointestinal micro flora includes preventing proliferation of pathogenic intestinal bacteria and facilitates digestion and absorption of nutrients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fructan:fructan fructosyltransferase (FFT) activity was purified about 300-fold from leaves of Lolium rigidura Gaudin by a combination of affinity chromatography, gel filtration, anion exchange and isoelectric focusing. The FFT activity was free of sucrose:sucrose fructosyltransferase and invertase activities. It had an apparent pI of 4.7 as determined by isoelectric focusing, and a molecular mass of about 50000 (gel filtration). The FFT activity utilized the trisaccharides 1-kestose and 6(G)-kestose as sole substrates, but was not able to use 6-kestose as sole substrate. The FFT activity was not saturated when assayed at concentrations of 1-kestose, 6(G)-kestose or (1,1)-kestotetraose of up to 400 mM The rate of reaction of the FFT activity was most rapid when assayed with 1-kestose and was less rapid when assayed with 6(G)-kestose, (1,1)-kestotetraose or (1,1,1)-kestopentaose. The FFT activity when assayed at a relatively high concentration of enzyme activity (approximately equivalent to about half the activity in crude extracts per gram fresh mass) did not synthesize fructan of degree of polymerization > 6, even during extended assays of up to 10 h. When assayed with a combination of 1-kestose and uniformly labelled [C-14]sucrose as substrates, the major reaction was the transfer of a fructosyl residue from 1-kestose to sucrose resulting in the re-synthesis of 1-kestose. Tetrasaccharide and 6(G)-kestose were also synthesized. When assayed with 6(G)-kestose and [C-14]sucrose as substrates, the major reaction of the FFT activity was the synthesis of tetrasaccharide. However, some synthesis of 1-kestose and re-synthesis of 6(G)-kestose also occurred. When 6, kestose was the sole substrate for the FFT activity, synthesis of tetrasaccharide was 2.7 to 3.4-fold slower than when 1-kestose was used as the sole substrate. Owing to differences in the fructan:sucrose fructosyltransferase activity of the FFT with each of the trisaccharides, net synthesis of tetrasaccharide by the FFT was altered significantly in the presence of sucrose. The magnitude of this effect depended on the concentration of the trisaccharides. In the presence of sucrose, 6(G)-kestose could be a substrate of equivalent importance to 1-kestose for synthesis of tetrasaccharide.
Resumo:
Sucrose:sucrose fructosyltransferase (SST) activity was partially purified from whole shoots of Lolium rigidum by a combination of affinity chromatography, gel filtration and anion-exchange chromatography. The SST activity co-eluted with some fructan:fructan fructosyltransferase (FFT) and invertase activities and consequently the partially purified preparation was termed the fructosyltransferase (FT) preparation. The SST-like activity in the FT preparation was purified 214-fold and had an apparent molecular mass of 84 000. The FT preparation contained several peptides with an apparent pI of 4.6-4.7. When assayed with sucrose concentrations up to 600 mM, the FT preparation synthesized 1-kestose at all concentrations, and synthesized 6-kestose at concentrations of 150 mM and greater. The K-m of 1-kestose production was 0.2 M. When the FT preparation was assayed at a concentration of activity approximately half that measured in fresh tissue with 100 mM sucrose, 1-kestose, or 6(G)-kestose as substrates, fructans of degree of polymerization (DP) less than or equal to 5 were synthesized. A partially purified FFT activity, free of SST and invertase activities, which synthesized beta-2,1-glycosidic linked oligofructans of DP less than or equal to 6, was combined in vitro with the FT preparation (FFT-FT preparation) to give a ratio of SST:FFT activities similar to that measured in crude enzyme extracts from L. rigidum. The FFT-FT preparation synthesized oligofructans when assayed with 100 mM concentrations of sucrose, 1-kestose or 6(G)-kestose, but was not able to synthesize fructans of DP greater than or equal to 6 even after extended assays of up to 10 h. The FFT-FT preparation was also assayed with 100 mM sucrose with small amounts of concentrated sucrose added periodically during the assay to maintain the substrate concentration. In this assay, the FFT-FT preparation synthesized fructans up to an apparent DP of 17 or greater. The fructans of DP greater than or equal to 6 synthesized in the assay appeared to form two molecular series containing both beta-2,1- and beta-2,6-glycosidic linked fructosyl residues with terminal or internal glucosyl residues. The apparent rate of SST activity in the assay of the FFT-FT preparation was greater than that measured in a similar assay of the FT preparation alone which did not result in fructans with DP greater than or equal to 6. It was concluded that the FFT-FT preparation, when assayed with a continual supply of sucrose, contained a factor which promoted synthesis of fructans of DP greater than or equal to 6 and synthesis of beta-2,B-glycosidic linkages between fructosyl residues.
Resumo:
This article reviews the progress of a personal endeavour to develop chromatography as a quantitative procedure for the determination of reaction stoichiometries and equilibrium constants governing protein interactions. As well as affording insight into an aspect of chromatography with which many protein chemists are unfamiliar, it shows the way in which minor adaptations of conventional chromatographic practices have rendered the technique one of the most powerful methods available for the characterization of interactions. That pathway towards quantification is followed from the introduction of frontal gel filtration for the study of protein self-association to the characterization of ligand binding by the biosensor variant of quantitative affinity chromatography.
Resumo:
The newborns of mammals have a high folate demand, yet obtain adequate folate nutrition solely from their mothers' milk despite its low folate content. Milk folate is entirely bound by an excess of folate-binding protein (FBP), prompting speculation that FBP may affect the bioavailability of the limited folate supply. Previous research has shown that FBP-bound folic acid is more gradually absorbed, thereby reducing the peak plasma folate concentration and preventing loss into the urine. Natural folates are reduced derivatives of folic acid, with milk predominantly containing 5-methyltetrahydrofolate, yet little research has been carried out to determine the role of FBP in the bioavailability of reduced folates. We studied the effect of FBP on folate nutrition of rats in both single-dose and 4-wk feeding experiments. The effect of FBP was influenced by the presence of other milk components. FBP increased bioavailability of dietary folate when it was consumed with other whey proteins or with soluble casein. However, in the presence of acid-precipitated casein or a whey preparation enriched in lipids, bioavailability was decreased. These results highlight the difficulties of extrapolating from experimental results obtained using purified diets alone and of studying interactions among dietary components. They suggest that the addition of FBP-rich foods to folate-rich foods could enhance the bioavailability of natural folates, but that the outcome of such a combination would depend on interactions with other components of the diet.
Resumo:
Two protein families that are critical for vesicle transport are the Syntaxin and Munc18/Sec1. families of proteins. These two molecules form a high affinity complex and play an essential role in vesicle docking and fusion. Munc18c was expressed as an N-terminally His-tagged fusion protein from recombinant baculovirus in Sf9 insect cells. His-tagged Munc18c was purified to homogeneity using both cobalt-chelating affinity chromatography and gel filtration chromatography. With this simple two-step protocol, 3.5 mg of purified Munc18c was obtained from a 1 L culture. Further, the N-terminal His-tag could be removed by thrombin cleavage while the tagged protein was bound to metal affinity resin. Recombinant Munc18c produced in this way is functional, in that it forms a stable complex with the SNARE interacting partner, syntaxin4. Thus we have developed a method for producing and purifying large amounts of functional Munc18c-both tagged and detagged-from a baculovirus expression system. We have also developed a method to purify the Munc18c:syntaxin4 complex. These methods will be employed for future functional and structural studies. Crown copyright (C) 2003 Published by Elsevier Inc. All rights reserved.
Resumo:
Glucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.