923 resultados para Adsorption Capacity
Resumo:
Energy crisis and worldwide environmental problem make hydrogen a prospective energy carrier. However, storage and transportation of hydrogen in large quantities at small volume is currently not practical. Lots of materials and devices have been developed for storage hydrogen, but to today none is able to meet the DOE targets. Activated carbon has been found to be a good hydrogen adsorbent due to its high surface area. However, the weak van der Waals force between hydrogen and the adsorbent has limited the adsorption capacity. Previous studies have found that enhanced adsorption can be obtained with applied electric field. Stronger interaction between the polarized hydrogen and the charged sorbents under high voltage is considered as the reason. This study was initiated to investigate if the adsorption can be further enhanced when the activated carbon particles are separated with a dielectric coating. Dielectric TiO2 nanoparticles were first utilized. Hydrogen adsorption measurements on the TiO2-coated carbon materials, with or without an external electric field, were made. The results showed that the adsorption capacity enhancement increased with the increasing amount of TiO2 nanoparticles with an applied electric field. Since the hydrogen adsorption capacity on TiO2 particles is very low and there is no hydrogen adsorption enhancement on TiO2 particles alone when electric field is applied, the effect of dielectric coating is demonstrated. Another set of experiments investigated the behavior of hydrogen adsorption over TiO2-coated activated carbon under various electric potentials. The results revealed that the hydrogen adsorption first increased and then decreased with the increase of electric field. The improved storage was due to a stronger interaction between charged carbon surface and polarized hydrogen molecule caused by field induced polarization of TiO2 coating. When the electric field was sufficient to cause considerable ionization of hydrogen, the decrease of hydrogen adsorption occurred. The current leak detected at 3000 V was a sign of ionization of hydrogen. Experiments were also carried out to examine the hydrogen adsorption performances over activated carbon separated by other dielectric materials, MgO, ZnO and BaTiO3, respectively. For the samples partitioned with MgO and ZnO, the measurements with and without an electric field indicated negligible differences. Electric field enhanced adsorption has been observed on the activated carbon separated with BaTiO3, a material with unusually high dielectric constant. Corresponding computational calculations using Density Functional Theory have been performed on hydrogen interaction with charged TiO2 molecule as well as TiO2 molecule, coronene and TiO2-doped coronene in the presence of an electric field. The simulated results were consistent with the observations from experiments, further confirming the proposed hypotheses.
Resumo:
In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBAT16). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBAT16 was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBAT16 (average pore diameter of 56.5 Å). The Brunauer-Emmett-Teller (BET) surface area of the SBAT16 was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBAT16 adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBAT16 where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Implications: Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.
Resumo:
CO2 adsorption has been measured in different types of graphitic nanostructures (MWCNTs, acid treated MWCNTs, graphene nanoribbons and pure graphene) in order to evaluate the effect of the different defective regions/conformations in the adsorption process, i.e., sp3 hybridized carbon, curved regions, edge defects, etc. This analysis has been performed both in pure carbon and nitrogen-doped nanostructures in order to monitor the effect of surface functional groups on surface created after using different treatments (i.e., acid treatment and thermal expansion of the MWCNTs), and study their adsorption properties. Interestingly, the presence of exposed defective regions in the acid treated nanostructures (e.g., uncapped nanotubes) gives rise to an improvement in the amount of CO2 adsorbed; the adsorption process being completely reversible. For N-doped nanostructures, the adsorption capacity is further enhanced when compared to the pure carbon nanotubes after the tubes were unzipped. The larger proportion of defect sites and curved regions together with the presence of stronger adsorbent–adsorbate interactions, through the nitrogen surface groups, explains their larger adsorption capacity.
Resumo:
This paper complements a previous one [1] about toluene adsorption on a commercial spherical activated carbon and on samples obtained from it by CO2 or steam activation. The present paper deals with the activation of a commercial spherical carbon (SC) having low porosity and high bed density (0.85 g/cm3) using the same procedure. Our results show that SC can be well activated with CO2 or steam. The increase in the burn-off percentage leads to an increase in the gravimetric adsorption capacity (more intensively for CO2) and a decrease in bed density (more intensively for CO2). However, for similar porosity developments similar bed densities are achieved for CO2 and steam. Especial attention is paid to differences between both activating agents, comparing samples having similar or different activation rates, showing that CO2 generates more narrow porosity and penetrates more inside the spherical particles than steam. Steam activates more from the outside to the interior of the spheres and hence produces larger spheres size reductions. With both activation agents and with a suitable combination of porosity development and bed density, quite high volumetric adsorption values of toluene (up to 236 g toluene/L) can be obtained even using a low toluene concentration (200 ppmv).
Resumo:
The use of hydrogen as an energy vector leads to the development of materials with high hydrogen adsorption capacity. In this work, a new layered stannosilicate, UZAR-S3, is synthesized and delaminated, producing UZAR-S4. UZAR-S3, with the empirical formula Na4SnSi5O14·3.5H2O and lamellar morphology, is a layered stannosilicate built from SnO6 and SiO4 polyhedra. The delamination process used here comprises three stages: protonation with acetic acid, swelling with nonylamine and the delamination itself with an HCl/H2O/ethanol solution. UZAR-S4 is composed of sheets a few nanometers thick with a high aspect ratio and a surface area of 236 m2/g, twenty times higher than that of UZAR-S3. At −196 °C for UZAR-S4, H2 adsorption reached remarkable values of 3.7 and 4.2 wt% for 10 and 40 bar, respectively, the latter value giving a high volumetric H2 storage capacity of 26.2 g of H2/L.
Micro/Mesoporous Activated Carbons Derived from Polyaniline: Promising Candidates for CO2 Adsorption
Resumo:
A series of activated carbons were prepared by carbonization of polyaniline at different temperatures, using KOH or K2CO3 as activating agent. Pure microporous or micro/mesoporous activated carbons were obtained depending on the preparation conditions. Carbonization temperature has been proven to be a key parameter to define the textural properties of the carbon when using KOH. Low carbonization temperatures (400–650 °C) yield materials with a highly developed micro- and mesoporous structure, whereas high temperatures (800 °C) yield microporous carbons. Some of the materials prepared using KOH exhibit a BET surface area superior to 4000 m2/g, with total pore volume exceeding 2.5 cm3/g, which are among the largest found for activated carbons. On the other hand, microporous materials are obtained when using K2CO3, independently of carbonization temperature. Some of the materials were tested for CO2 capture due to their high microporosity and N content. The adsorption capacity for CO2 at atmospheric pressure and 0 °C achieves a value of ∼7.6 mmol CO2/g, which is among the largest reported in the literature. This study provides guidelines for the design of activated carbons with a proper N/C ratio for CO2 capture at atmospheric pressure.
Resumo:
Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N-2 adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Adsorption isotherms of methane and carbon dioxide on two kinds of Australian coals have been measured at three temperatures up to pressures of 20 MPa. The adsorption behavior is described by three isotherm equations: extended three-parameter, Langmuir, and Toth. Among these, the Toth equation is found to be the most suitable, yielding the most realistic values of pore volume of the coals and the adsorbed phase density. Also, the surface area of coals obtained from CO2 adsorption at 273 K is found to be the meaningful parameter which captures the CO2 adsorption capacity. A maximum in the excess amount adsorbed of each gas appears at a lower pressure with a decrease in temperature. For carbon dioxide, after the appearance of the maximum, an inflection point in the excess amount adsorbed is observed close to the critical density at each temperature, indicating that the decrease in the gas-phase density change with pressure influences the behavior of the excess amount adsorbed. In the context of CO2 sequestration, it is found that CO2 injection pressures of lower than 10 MPa may be desirable for the CH4 recovery process and CO2-holding capacity.
Resumo:
Colored wastewater poses a challenge to the conventional wastewater treatment techniques. Solid-liquid phase adsorption has been found to be effective for the removal of dyes from effluent. In this paper, the ability of bentonite as an adsorbent for the removal of a commercial dye, Basic Red 2 (BR2), from an aqueous solution has been investigated under various experimental conditions. The adsorption kinetics was shown to be pseudo-second-order. It was found that bentonite had high adsorption capacity for BR2 due to cation exchange. The adsorption equilibrium data can be fitted well by the Langmuir adsorption isotherm model. The effect of the experimental parameters, such as temperature, salt, and pH was investigated through a number of batch adsorption experiments. It was found that the removal of dye increased with the increase in solution pH. However, the change of temperature (15-45 degrees C) and the addition of sodium chloride were found to have little effect on the adsorption process. The results show that electrostatic interactions are not dominant in the interaction between BR2 and bentonite. It was found that the adsorption was a rapid process with 80-90% of the dye removed within the first 2-3 min. Bentonite as an adsorbent is promising for color removal from wastewater.
Resumo:
In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.
Resumo:
Vapor phase carbon adsorption systems are used to remove aromatics, aliphatics, and halogenated hydrocarbons. The adsorption capacity of granular activated carbon is reduced when environmental parameters (temperature, pressure, and humidity) interfere with homogeneous surface diffusion and pore distribution dynamics. The purpose of this study was to investigate the effects of parametric uncertainties in adsorption efficiency. ^ Modified versions of the Langmuir isotherm in conjunction with thermodynamic equations described gaseous adsorption of single component influent onto microporous media. Experimental test results derived from Wang et al. (1999) simulated adsorption kinetics while the Myer and monsoon Langmuir constant accounted for isothermal gas compression and energetic heterogeneity under thermodynamic equilibrium conditions. Responsiveness of adsorption capacity to environmental uncertainties was analyzed by statistical sensitivity and modeled by breakthrough curves. Results indicated that extensive fluctuations in adsorption capacity significantly reduced carbon consumption while isothermal variations had a pronounced effect on saturation capacity. ^
Resumo:
This work investigates the production of activated lignin-chitosan extruded (ALiCE) pellets with controlled particle size distribution (almost spherical: dp ~500‒1000µm) for efficient methylene blue adsorption. The novel preparation method employed in this study successfully produced activated lignin-chitosan pellets. Structural and morphological characterizations were performed using BET, FTIR and SEM-EDX analyses. The influence of contact time, solution pH, ionic strength, initial adsorbate concentration and desorption studies was investigated. The experimental data fitted well with the Langmuir isotherm (R2 = 0.997), yielding a maximum adsorption capacity of 36.25mg/g. The kinetic data indicated that methylene blue (MB) adsorption onto ALiCE can be represented by the pseudo second-order-model with intraparticle processes initially controlling the process of MB adsorption. Overall, these results indicate that the novel ALiCE offers great potential for removing cationic organic pollutants from rivers and streams.
Resumo:
Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan was optimized. Chitosan was obtained from shrimp wastes and characterized.Afull factorial design was used to analyze the effects of pH, stirring rate and contact time in adsorption capacity. In the optimal conditions, adsorption kinetics was studied and the experimental data were fitted with three kinetic models. The produced chitosan showed good characteristics for dye adsorption. The optimal conditions were: pH 3, 150rpm and 60 min for acid blue 9 and pH 3, 50rpm and 60 min for food yellow 3. In these conditions, the adsorption capacities values were 210mgg−1 and 295mgg−1 for acid blue 9 and food yellow 3, respectively. The Elovich kinetic model was the best fit for experimental data and it showed the chemical nature of dyes adsorption onto chitosan.
Resumo:
Titanium dioxide (TiO2) nanoparticles with different sizes and crystalloid structures produced by the thermal method and doped with silver iodide (AgI), nitrogen (N), sulphur (S) and carbon (C) were applied as adsorbents. The adsorption of Methyl Violet (MV), Methylene Blue (MB), Methyl Orange (MO) and Orange II on the surface of these particles was studied. The photocatalytic activity of some particles for the destruction of MV and Orange II was evaluated under sunlight and visible light. The equilibrium adsorption data were fitted to the Langmuir, Freundlich, Langmuir-Freundlich and Temkin isotherms. The equilibrium data show that TiO2 particles with larger sizes and doped with AgI, N, S and C have the highest adsorption capacity for the dyes. The kinetic data followed the pseudo-first order and pseudo-second order models, while desorption data fitted the zero order, first order and second order models. The highest adsorption rate constant was observed for the TiO2 with the highest anatase phase percentage. Factors such as anatase crystalloid structure, particle size and doping with AgI affect the photocatalytic activity significantly. Increasing the rutile phase percentage also decreases the tendency to desorption for N-TiO2 and S-TiO2. Adsorption was not found to be important in the photocatalytic decomposition of MV in an investigation with differently sized AgI-TiO2 nanoparticles. Nevertheless C-TiO2 was found to have higher adsorption activity onto Orange II, as the adsorption role of carbon approached synchronicity with the oxidation role.
Resumo:
It is global concern that soil and water were contaminated with organic substances such as BTEX (benzene) (B), toluene (T) and xylene (x) .The presence of excessive amounts of BTEX in aqueous surroundings may have a greatly adverse impact on water quality and thus endanger public health and welfare. Carbon nanotubes (CNT) have aroused widespread attention as a new type of adsorptions due to their outstanding ability for the removal of various inorganic and organic pollutants from large volume of wastewater. Due to variety of adsorbent and their ability to adsorb pollutant, it is possible to reduce expenses and completely omit pollutant. In this CNT is used as a new adsorbent for removal pollutant such as benzene, toluene, and xylene. The result in the area of adsorbing benzene, toluene, and xylene is as follows: the changes of pH don’t affect the capacity of adsorption and the greatest amount of adsorption occurs in pH. The greatest amount of adsorption occurs when using 0.01gr CNT oxidized. Comparing CNT with CNT oxidized in term of adsorption capacity, it is proved that the adsorption capacity of CNT oxidized is much more than CNT. The result of comparing the percentage of adsorption of mentioned elements (B, X, T) is as follows; the amount of adsorption of xylene is more than toluene and toluene is more than benzene. It should be mentioned that in this research the percentage of adsorption to measure is between to 70-80.