988 resultados para Activity coefficient
Resumo:
Background Research on the relationship between Health Related Quality of Life (HRQoL) and physical activity (PA), to date, have rarely investigated how this relationship differ across objective and subjective measures of PA. The aim of this paper is to explore the relationship between HRQoL and PA, and examine how this relationship differs across objective and subjective measures of PA, within the context of a large representative national survey from England. Methods Using a sample of 5,537 adults (40–60 years) from a representative national survey in England (Health Survey for England 2008), Tobit regressions with upper censoring was employed to model the association between HRQoL and objective, and subjective measures of PA controlling for potential confounders. We tested the robustness of this relationship across specific types of PA. HRQoL was assessed using the summary measure of health state utility value derived from the EuroQol-5 Dimensions (EQ-5D) whilst PA was assessed via subjective measure (questionnaire) and objective measure (accelerometer- actigraph model GT1M). The actigraph was worn (at the waist) for 7 days (during waking hours) by a randomly selected sub-sample of the HSE 2008 respondents (4,507 adults – 16 plus years), with a valid day constituting 10 hours. Analysis was conducted in 2010. Results Findings suggest that higher levels of PA are associated with better HRQoL (regression coefficient: 0.026 to 0.072). This relationship is consistent across different measures and types of PA although differences in the magnitude of HRQoL benefit associated with objective and subjective (regression coefficient: 0.047) measures of PA are noticeable, with the former measure being associated with a relatively better HRQoL (regression coefficient: 0.072). Conclusion Higher levels of PA are associated with better HRQoL. Using an objective measure of PA compared with subjective shows a relatively better HRQoL.
Resumo:
This study examined patients’ preference ratings for receiving support via remote communication to increase their lifestyle physical activity. Methods People with musculoskeletal disorders ( n=221 of 296 eligible) accessing one of three clinics provided preference ratings for “how much” they wanted to receive physical activity support via five potential communication modalities. The five ratings were generated on a horizontal analogue rating scale (0 represented “not at all”; 10 represented “very much”). Results Most (n=155, 70%) desired referral to a physical activity promoting intervention. “Print and post” communications had the highest median preference rating (7/10), followed by email and telephone (both 5/10), text messaging (1/10), and private Internet-based social network messages (0/10). Desire to be referred was associated with higher preference for printed materials (coefficient = 2.739, p<0.001), telephone calls (coefficient = 3.000, p<0.001), and email (coefficient = 2.059, p=0.02). Older age was associated with lower preference for email (coefficient = −0.100, p<0.001), texting (coefficient = −0.096, p<0.001), and social network messages (coefficient = −0.065, p<0.001). Conclusion Patients desiring support to be physically active indicated preferences for interventions with communication via print, email, or telephone calls.
Resumo:
A series of 3,4-dimethyl-4-(3-hydroxyphenyl) piperidine opioid antagonists with varying substituents on the nitrogen were evaluated for their effect on food consumption in obese Zucker rats. In developing three-dimensional quantitative structure-activity relationship (3D-QSAR) studies for this series of opioid antagonists, different structure alignments have been tested to predict the anorectant activities. The interaction energies between molecules and the probe atom were then correlated with anorectant activity using partial least squares (PLS) method. The steric and electrostatic features of the 3D-QSAR were presented in the form of standard deviation coefficient contour maps of steric and electrostatic fields. The results showed that 3D-QSAR results are much better than the results obtained by 2D-QSAR.
Resumo:
In this study, hemolytic activity of venom from the jellyfish Rhopilema esculentum Kishinouye and some factors affecting it were assayed. The HU50 of R. esculentum full venom (RFV) against chicken erythrocytes was 3.40 mu g/ml and a Hill coefficient value was 1.73 suggesting at least two molecules participated in hemolytic activity. The hemolytic activity of RFV was affected by some chemical and physical factors such as divalent cations, EDTA, (NH4)(2)SO4, pH and temperature. In the presence of Mg2+, Cu2+, Zn2+, Fe2+, Ca2+ ( >= 2 mM), Mn2+ (>= 1 mM), EDTA (>= 2 mM) and (NH4)(2)SO4, the hemolytic activity of RFV was reduced. RFV had strong hemolytic activity at the pH 6-10 and the hemolytic ratios were 0.95-1.19. Hemolytic activity was temperature-sensitive and when RFV was pre-incubated at temperatures over 40 degrees C, it was sharply reduced. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Functional MRI (fMRI) can detect blood oxygenation level dependent (BOLD) hemodynamic responses secondary to neuronal activity. The most commonly used method for detecting fMRI signals is the gradient-echo echo-planar imaging (EPI) technique because of its sensitivity and speed. However, it is generally believed that a significant portion of these signals arises from large veins, with additional contribution from the capillaries and parenchyma. Early experiments using diffusion-weighted gradient-echo EPI have suggested that intra-voxel incoherent motion (IVIM) weighting inherent in the sequence can selectively attenuate contributions from different vessels based on the differences in the mobility of the blood within them. In the present study, we used similar approach to characterize the apparent diffusion coefficient (ADC) distribution within the activated areas of BOLD contrast. It is shown that the voxel values of the ADCs obtained from this technique can infer various vascular contributions to the BOLD signal.
Resumo:
Valve and cardiac activity were simultaneously measured in the blue mussel (Mytilus edulis) in response to 10 d copper exposure. Valve movements, heart rates and heart-rate variability were obtained non-invasively using a Musselmonitor(R) (valve activity) and a modified version of the Computer-Aided Physiological Monitoring system (CAPMON; cardiac activity). After 2 d exposure of mussels (4 individuals per treatment group) to a range of dissolved copper concentrations (0 to 12.5 mu M as CuCl2) median valve positions (% open) and median heart rates (beats per minute) declined as a function of copper concentration. Heart-rate variability (coefficient of variation for interpulse durations) rose in a concentration-dependent manner. The 48 h EC50 values (concentrations of copper causing 50% change) for valve positions, heart rates and heart-rate variability were 2.1, 0.8, and 0.06 mu M, respectively. Valve activity was weakly correlated with both heart rate (r = 0.48 +/- 0.02) and heart-rate variability (r = 0.32 +/- 0.06) for control individuals (0 mu M Cu2+). This resulted from a number of short enclosure events that did not coincide with a change in cardiac activity. Exposure of mussels to increasing copper concentrations (greater than or equal to 0.8 mu M) progressively reduced the correlation between valve activity and heart rates (r = 0 for individuals dosed with greater than or equal to 6.3 mu M Cu2+), while correlations between valve activity and heart-rate variability were unaffected. The poor correlations resulted from periods of valve flapping that were not mimicked by similar fluctuations in heart rate or heart-rate variability. The data suggest that the copper-induced bradycardia observed in mussels is not a consequence of prolonged valve closure.
Resumo:
Background
Feasible, cost-effective instruments are required for the surveillance of moderate-to-vigorous physical activity (MVPA) and sedentary behaviour (SB) and to assess the effects of interventions. However, the evidence base for the validity and reliability of the World Health Organisation-endorsed Global Physical Activity Questionnaire (GPAQ) is limited. We aimed to assess the validity of the GPAQ, compared to accelerometer data in measuring and assessing change in MVPA and SB.
Participants (n = 101) were selected randomly from an on-going research study, stratified by level of physical activity (low, moderate or highly active, based on the GPAQ) and sex. Participants wore an accelerometer (Actigraph GT3X) for seven days and completed a GPAQ on Day 7. This protocol was repeated for a random sub-sample at a second time point, 3–6 months later. Analysis involved Wilcoxon-signed rank tests for differences in measures, Bland-Altman analysis for the agreement between measures for median MVPA and SB mins/day, and Spearman’s rho coefficient for criterion validity and extent of change.
Results95 participants completed baseline measurements (44 females, 51 males; mean age 44 years, (SD 14); measurements of change were calculated for 41 (21 females, 20 males; mean age 46 years, (SD 14). There was moderate agreement between GPAQ and accelerometer for MVPA mins/day (r = 0.48) and poor agreement for SB (r = 0.19). The absolute mean difference (self-report minus accelerometer) for MVPA was −0.8 mins/day and 348.7 mins/day for SB; and negative bias was found to exist, with those people who were more physically active over-reporting their level of MVPA: those who were more sedentary were less likely to under-report their level of SB. Results for agreement in change over time showed moderate correlation (r = 0.52, p = 0.12) for MVPA and poor correlation for SB (r = −0.024, p = 0.916).
Levels of agreement with objective measurements indicate the GPAQ is a valid measure of MVPA and change in MVPA but is a less valid measure of current levels and change in SB. Thus, GPAQ appears to be an appropriate measure for assessing the effectiveness of interventions to promote MVPA.
Resumo:
Automatic tracking of vorticity centers in European Centre for Medium-Range Weather Forecasts analyses has been used to develop a 20-yr climatology of African easterly wave activity. The tracking statistics at 600 and 850 mb confirm the complicated easterly wave structures present over the African continent. The rainy zone equatorward of 15 degreesN is dominated by 600-mb activity, and the much drier Saharan region poleward of 15 degreesN is more dominated by 850-mb activity. Over the Atlantic Ocean there is just one storm track with the 600- and 850-mb wave activity collocated. Based on growth/decay and genesis statistics, it appears that the 850-mb waves poleward of 15 degreesN over land generally do not get involved with the equatorward storm track over the ocean. Instead, there appears to be significant development of 850-mb activity at the West African coast in the rainy zone around (10 degreesN, 10 degreesW), which, it is proposed, is associated with latent heat release. Based on the tracking statistics, it has been shown that there is marked interannual variability in African easterly wave (AEW) activity. It is especially marked at the 850-mb level at the West African coast between about 10 degrees and 15 degreesN, where the coefficient of variation is 0.29. For the period between 1985 and 1998, a notable positive correlation is seen between this AEW activity and Atlantic tropical cyclone activity. This correlation is particularly strong for the postreanalysis period between 1994 and 1998. This result suggests that Atlantic tropical cyclone activity may be influenced by the number of AEWs leaving the West African coast, which have significant low-level amplitudes, and not simply by the total number of AEWs.
Resumo:
Structure activity relationships (SARs) are presented for the gas-phase reactions of RO2 with HO2, and the self- and cross-reactions of RO2. For RO2+HO2 the SAR is based upon a correlation between the logarithm of the measured rate coefficient and a calculated ionisation potential for the molecule R-CH=CH2, R being the same group in both the radical and molecular analogue. The correlation observed is strong and only for one RO2 species does the measured rate coefficient deviate by more than a factor of two from the linear least-squares regression line. For the self- and cross-reactions of RO2 radicals, the SAR is based upon a correlation between the logarithm of the measured rate coefficient and the calculated electrostatic potential (ESP) at the equivalent carbon atom in the RH molecule to which oxygen is attached in RO2, again R being the same group in the molecule and the radical. For cases where R is a simple alkyl-group, a strong linear correlation observed. For RO2 radicals which contain lone pair-bearing substituents and for which the calculated ESP<-0.05 self-reaction rate coefficients appear to be insensitive to the value of the ESP. For RO2 of this type with ESP>-0.05 a linear relationship between log k and the ESP is again observed. Using the relationships, 84 out of the 85 rate coefficients used to develop the SARs are predicted to within a factor of three of their measured values. A relationship is also presented that allows the prediction of the Arrhenius parameters for the self-reactions of simple alkyl RO2 radicals. On the basis of the correlations, predictions of room-temperature rate coefficients are made for a number of atmospherically important peroxyl-peroxyl radical reactions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Gas-phase rate coefficients for the atmospherically important reactions of NO3, OH and O-3 are predicted for 55 alpha,beta-unsaturated esters and ketones. The rate coefficients were calculated using a correlation described previously [Pfrang, C., King, M.D., C. E. Canosa-Mas, C.E., Wayne, R.P., 2006. Atmospheric Environment 40, 1170-1179]. These rate coefficients were used to extend structure-activity relations for predicting the rate coefficients for the reactions of NO3, OH or O-3 with alkenes to include alpha,beta-unsaturated esters and ketones. Conjugation of an alkene with an alpha,beta-keto or alpha,beta-ester group will reduce the value of a rate coefficient by a factor of similar to 110, similar to 2.5 and similar to 12 for reaction with NO3, OH or O-3, respectively. The actual identity of the alkyl group, R, in -C(O)R or -C(O)OR has only a small influence. An assessment of the reliability of the SAR is given that demonstrates that it is useful for reactions involving NO3 and OH, but less valuable for those of O-3 or peroxy nitrate esters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We analyze the causes of the century-long increase in geomagnetic activity, quantified by annual means of the aa index, using observations of interplanetary space, galactic cosmic rays, the ionosphere, and the auroral electrojet, made during the last three solar cycles. The effects of changes in ionospheric conductivity, the Earth's dipole tilt, and magnetic moment are shown to be small; only changes in near-Earth interplanetary space make a significant contribution to the long-term increase in activity. We study the effects of the interplanetary medium by applying dimensional analysis to generate the optimum solar wind-magnetosphere energy coupling function, having an unprecedentedly high correlation coefficient of 0.97. Analysis of the terms of the coupling function shows that the largest contributions to the drift in activity over solar cycles 20-22 originate from rises in the average interplanetary magnetic field (IMF) strength, solar wind concentration, and speed; average IMF orientation has grown somewhat less propitious for causing geomagnetic activity. The combination of these factors explains almost all of the 39% rise in aa observed over the last three solar cycles. Whereas the IMF strength varies approximately in phase with sunspot numbers, neither its orientation nor the solar wind density shows any coherent solar cycle variation. The solar wind speed peaks strongly in the declining phase of even-numbered cycles and can be identified as the chief cause of the phase shift between the sunspot numbers and the aa index. The rise in the IMF magnitude, the largest single contributor to the drift in geomagnetic activity, is shown to be caused by a rise in the solar coronal magnetic field, consistent with a rise in the coronal source field, modeled from photospheric observations, and an observed decay in cosmic ray fluxes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A, M. Soares, V, M, Rodrigues, M. I. Homsi-Brandeburgo, M. H. Toyama, F, R, Lombardi, K. Arni and J. R, Giglio. A rapid procedure for the isolation of the Lys-49 myotoxin II from Bothrops moojeni (caissaca) venom: Biochemical characterization, crystallization, myotoxic and edematogenic activity. Toxicon 36, 503-514, 1998.-Bothrops moojeni snake venom was fractionated on a CM-Sepharose column which was previously equilibrated with 0.05 M ammonium bicarbonate buffer at pH 8.0 and subsequently eluted with an ammonium bicarbonate concentration gradient from 0.05 to 0.5 M at constant pH (8.0) and temperature (25 degrees C). The fraction which eluted last (M-VI) showed, after direct lyophilization, a single band by polyacrylamide gel electrophoresis (PAGE) and SDS-PAGE, indicating an approximate M,. of 14 000 and 77 000, in the presence and absence of dithiothreitol, respectively. Its amino acid composition revealed a high level of hydrophobic and basic amino acids as well as 13 half-cystine residues. Its isoelectric point and extinction coefficient (E-1.0cm(1.0mg/ml) at 278 nm and pH 7.0) were 8.2 and 1.170, respectively. M-VI was devoid of phospholipase A(2) (PLA(2)) activity on egg yolk, as well as of hemorrhagic, anticoagulant and coagulant activities, but could induce drastic necrosis on skeletal muscle fibres as well as rapid and transient edema on the rat paw. Its N-terminal sequence: SLFELGKMILQETGKNPAKSYGVYGCNCGVGGRGKPKDATDRCCYVHKCCYK.... revealed high homology with other Lys 49 PLA(2)-like myotoxins from other bothropic venoms. Orthorhombic crystals of M-VI? which diffracted to a maximal resolution of 1.6 Angstrom. were obtained and indicated the presence of a dimer in the asymmetrical unit. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
1. In order to investigate the effect of aging on the erythrocyte glutathione system, total glutathione (GSH), glutathione reductase (GSH-red) and glutathione peroxidase (GSH-px) levels were measured in erythrocytes from 33 young (mean age = 30.5 +/- 9.7 years) and 28 aged (mean age = 68.9 +/- 11.4 years) healthy individuals.2. GSH was 3.5 +/- 1.8-mu-M/g Hb for the young group, a value significantly greater (P < 0.01) than 2.3 +/- 0.9-mu-M/g Hb found for the aged group. Similarly, GSH-red activity, 5.5 +/- 1.8 IU/g Hb, was higher (P < 0.05) for the young group than 3.4 +/- 0.9 IU/g Hb found for the aged group. The GSH-px activity levels for the young group, 21.1 +/- 5.9 IU/g Hb, were significantly greater (P < 0.01) than 12.0 +/- 3.3 IU/g Hb for the aged group. The lower activity detected in the aged group for all of these parameters of the glutathione redox system was not related to low levels of hematocrit or hemoglobin.3. There was no statistical difference in the activation coefficient (AC) of reductase (+FAD/-FAD) between groups, which seems to indicate that the lower activity of glutathione reductase observed in the aged group was not due to riboflavin deficiency.4. Additional information is required to determine the mechanisms controlling the glutathione redox system and its role in the aging process.
Resumo:
Purpose. Isokinetic tests are often applied to assess muscular strength and EMG activity, however the specific ranges of motion used in testing (fully flexed or extended positions) might be constrictive and/or be painful for patients with injuries or under-going rehabilitation. The aim of this study was to examine the effects of different ranges of motion (RoM) when determining maximal EMG during isokinetic knee flexion and extension with different types of contractions and velocities. Methods. Eighteen males had EMG activity recorded on the vastus lateralis, vastus medialis, semitendinosus and biceps femoris muscles during five maximal isokinetic concentric and eccentric contractions for the knee flexors and extensors at 60° • s -1 and 180° • s -1. The root mean square of EMG was calculated at three different ranges of motion: (1) a full range of motion (90°-20° [0° = full knee extension]); (2) a range of motion of 20° (between 60°-80° and 40°-60° for knee extension and flexion, respectively) and (3) at a 10° interval around the angle where peak torque is produced. EMG measurements were statistically analyzed (ANOVA) to test for the range of motion, contraction velocity and contraction speed effects. Coefficients of variation and Pearson's correlation coefficients were also calculated among the ranges of motion. Results. Predominantly similar (p > 0.05) and well-correlated EMG results (r > 0.7, p ≤ 0.001) were found among the ranges of motion. However, a lower coefficient of variation was found for the full range of motion, while the 10° interval around peak torque at 180° • s -1 had the highest coefficient, regardless of the type of contraction. Conclusions. Shorter ranges of motion at around the peak torque angle provides a reliable indicator when recording EMG activity during maximal isokinetic parameters. It may provide a safer alternative when testing patients with injuries or undergoing rehabilitation.