957 resultados para Absorption.
Resumo:
Pregnancy is a dynamic state and the placenta is a temporary organ that, among other important functions, plays a crucial role in the transport of nutrients and metabolites between the mother and the fetus, which is essential for a successful pregnancy. Among these nutrients, glucose is considered a primary source of energy and, therefore, fundamental to insure proper fetus development. Several studies have shown that glucose uptake is dependent on several morphological and biochemical placental conditions. Oxidative stress results from the unbalance between reactive oxygen species (ROS) and antioxidants, in favor of the first. During pregnancy, ROS, and therefore oxidative stress, increase, due to increased tissue oxygenation. Moreover, the relation between ROS and some pathological conditions during pregnancy has been well established. For these reasons, it becomes essential to understand if oxidative stress can compromise the uptake of glucose by the placenta. To make this study possible, a trophoblastic cell line, the BeWo cell line, was used. Experiments regarding glucose uptake, either under normal or oxidative stress conditions, were conducted using tert-butylhydroperoxide (tBOOH) as an oxidative stress inducer, and 3H-2-deoxy-D-glucose (3H-DG) as a glucose analogue. Afterwards, studies regarding the involvement of glucose facilitative transporters (GLUT) and the phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC) pathways were conducted, also under normal and oxidative stress conditions. A few antioxidants, endogenous and from diet, were also tested in order to study their possible reversible effect of the oxidative effect of tBOOH upon apical 3H-DG uptake. Finally, transepithelial studies gave interesting insights regarding the apical-to-basolateral transport of 3H-DG. Results showed that 3H-DG uptake, in BeWo cells, is roughly 50% GLUT-mediated and that tBOOH (100 μM; 24h) decreases apical 3H-DG uptake in BeWo cells by about 33%, by reducing both GLUT- (by 28%) and non-GLUT-mediated (by 40%) 3H-DG uptake. Uptake of 3H-DG and the effect of tBOOH upon 3H-DG uptake are not dependent on PKC and PI3K. Moreover, the effect of tBOOH is not associated with a reduction in GLUT1 mRNA levels. Resveratrol, quercetin and epigallocatechin-3-gallate, at 50 μM, reversed, by at least 45%, the effect of tBOOH upon 3H-DG uptake. Transwell studies show that the apical-to-basolateral transepithelial transport of 3H-DG is increased by tBOOH.In conclusion, our results show that tBOOH caused a marked decrease in both GLUT and non-GLUT-mediated apical uptake of 3H-DG by BeWo cells. Given the association of increased oxidative stress levels with several important pregnancy pathologies, and the important role of glucose for fetal development, the results of this study appear very interesting.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA). This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.
Resumo:
[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.
Resumo:
The mineral content (phosphorous (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu)) of eight ready-to-eat baby leaf vegetables was determined. The samples were subjected to microwave-assisted digestion and the minerals were quantified by High-Resolution Continuum Source Atomic Absorption Spectrometry (HR-CS-AAS) with flame and electrothermal atomisation. The methods were optimised and validated producing low LOQs, good repeatability and linearity, and recoveries, ranging from 91% to 110% for the minerals analysed. Phosphorous was determined by a standard colorimetric method. The accuracy of the method was checked by analysing a certified reference material; results were in agreement with the quantified value. The samples had a high content of potassium and calcium, but the principal mineral was iron. The mineral content was stable during storage and baby leaf vegetables could represent a good source of minerals in a balanced diet. A linear discriminant analysis was performed to compare the mineral profile obtained and showed, as expected, that the mineral content was similar between samples from the same family. The Linear Discriminant Analysis was able to discriminate different samples based on their mineral profile.
Resumo:
Ligand K-edge XAS of an [Fe3S4]0 model complex is reported. The pre-edge can be resolved into contributions from the í2Ssulfide, í3Ssulfide, and Sthiolate ligands. The average ligand-metal bond covalencies obtained from these pre-edges are further distributed between Fe3+ and Fe2.5+ components using DFT calculations. The bridging ligand covalency in the [Fe2S2]+ subsite of the [Fe3S4]0 cluster is found to be significantly lower than its value in a reduced [Fe2S2] cluster (38% vs 61%, respectively). This lowered bridging ligand covalency reduces the superexchange coupling parameter J relative to its value in a reduced [Fe2S2]+ site (-146 cm-1 vs -360 cm-1, respectively). This decrease in J, along with estimates of the double exchange parameter B and vibronic coupling parameter ì2/k-, leads to an S ) 2 delocalized ground state in the [Fe3S4]0 cluster. The S K-edge XAS of the protein ferredoxin II (Fd II) from the D. gigas active site shows a decrease in covalency compared to the model complex, in the same oxidation state, which correlates with the number of H-bonding interactions to specific sulfur ligands present in the active site. The changes in ligand-metal bond covalencies upon redox compared with DFT calculations indicate that the redox reaction involves a two-electron change (one-electron ionization plus a spin change of a second electron) with significant electronic relaxation. The presence of the redox inactive Fe3+ center is found to decrease the barrier of the redox process in the [Fe3S4] cluster due to its strong antiferromagnetic coupling with the redox active Fe2S2 subsite.
Resumo:
Until now, in models of endogenous growth with physical capital, human capital and R&D such as in Arnold [Journal of Macroeconomics 20 (1998)] and followers, steady-state growth is independent of innovation activities. We introduce absorption in human capital accumulation and describe the steady-state and transition of the model. We show that this new feature provides an effect of R&D in growth, consumption and welfare. We compare the quantitative effects of R&D productivity with the quantitative effects of Human Capital productivity in wealth and welfare.
Resumo:
Patients residing in endemic areas for schistosomiasis in Brazil are usually undernourished and when they develop the hepatosplenic clinical form of the disease should usually receive hospital care, many of them being in need of nutritional rehabilitation before specific treatment can be undertaken. In the mouse model, investigations carried out in our laboratory detected a reduced aminoacid uptake in undernourished animals which is aggravated by a superimposed infection with Schistosoma mansoni. However, in well-nourished infected mice no dysfunction occurs. In this study, we tried to improve the absorptive intestinal performance of undernourished mice infected with S. mansoni by feeding them with hydrolysed casein instead of whole casein. The values obtained for the coefficient of protein intestinal absorption (cpia) among well-nourished mice were above 90% (either hydrolysed or whole protein). In undernourished infected mice, however, the cpia improved significantly after feeding them with hydrolysed casein, animals reaching values close to those obtained in well-nourished infected mice.
Resumo:
We study the low frequency absorption cross section of spherically symmetric nonextremal d-dimensional black holes. In the presence of α′ corrections, this quantity must have an explicit dependence on the Hawking temperature of the form 1/TH. This property of the low frequency absorption cross section is shared by the D1-D5 system from type IIB superstring theory already at the classical level, without α′ corrections. We apply our formula to the simplest example, the classical d-dimensional Reissner-Nordstr¨om solution, checking that the obtained formula for the cross section has a smooth extremal limit. We also apply it for a d-dimensional Tangherlini-like solution with α′3 corrections.
Resumo:
We analyze the low frequency absorption cross section of minimally coupled massless scalar fields by different kinds of charged static black holes in string theory, namely the D1–D5 system in d=5 and a four dimensional dyonic four-charged black hole. In each case we show that this cross section always has the form of some parameter of the solution divided by the black hole Hawking temperature. We also verify in each case that, despite its explicit temperature dependence, such quotient is finite in the extremal limit, giving a well defined cross section. We show that this precise explicit temperature dependence also arises in the same cross section for black holes with string \alpha' corrections: it is actually induced by them.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2003
Resumo:
In order to obtain the following informations: a) dry matter production and extraction of nutrients by the fruits at different ages; b) dry matter production and extraction of nutrient by the leaves and "trunk + branches" collected at the flowering stage; c) dry matter production and export of nutrients by pruning (leaves and branches) at the begining dormant stage; A trial was conducted on Latossolo Vermelho Escuro Orto group (Orthox) at Buri, São Paulo State, Brazil. The material was collected from 'Ohio Beauty' and 'Brazil' apples grafted on 'Doucin' 1-2; 3-4; 4-5 and 6-7 years old. The main conclusions were as follows: a) differences were observed on dry matter production by two varieties at the different stages of growth; b) differences were also observed between the two varieties on the matter production in the leaves and "trunk + branches" at the flowering stage, as well as by the leaves and branches pruned at the begining of dormant stages; c) differences were observed betwen the two varieties concerning to nutrient concentration (on dry matter basis) on the fruits collected at different stages of growth. Same results were observed on leaves and "trunk + branches" collected at flowering period; d) differences were observed on the exportation of the nutrients referring to growth period of fruit; e) at the flowering and dormant period, differences were observed on the contents of nutrients in the leaves, 'trunk + branches', on the two varieties; f) the nutrient exportation by the fruits obyed the following order: K>N>P>S>Ca>Mg>Fe>B > Cu > Mn > Zn > Mo; g) the nutrient extration by the aerial part the apple trees obyed the following order: N > K > Ca > Mg > P > S > Fe > B > Cu = Mn = Zn.
Resumo:
Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.
Resumo:
OBJECTIVE: The hyperglycemic hyperinsulinemic clamp technique using intraduodenally infused glucose is an attractive tool for studying postprandial glucose metabolism under strictly controlled conditions. Because it requires the use of somatostatin (SST), we examined, in this study, the effect of SST on intestinal glucose absorption. CONTEXT: Twenty-six normal volunteers were given a constant 3-h intraduodenal infusion of glucose (6 mg.kg(-1).min(-1)) labeled with [2-(3)H]glucose for glucose absorption measurement. During glucose infusion, 19 subjects received iv SST at doses of 10-100 ng.kg(-1).min(-1) plus insulin and glucagon, and seven subjects were studied under control conditions. In the controls, glucose was absorbed at a rate that, after a 20-min lag period, equaled the infusion rate. RESULTS: With all the doses of SST tested, absorption was considerably delayed but equaled the rate of infusion after 3 h. At that time, only 5 +/- 2% of the total amount of infused glucose was unabsorbed in the control subjects vs. 36 +/- 2% (P < 0.001) in the SST-infused subjects. In the latter, the intraluminal residue was almost totally absorbed within 40 min of the cessation of SST infusion. At the lowest dose of SST tested (10 ng.kg(-1).min(-1)), suppression of insulin secretion was incomplete. CONCLUSION: These properties of SST hamper the use of intraduodenal hyperglycemic hyperinsulinemic clamps as a tool for exploring postprandial glucose metabolism.
Resumo:
Intestinal protein absorption was studied in undernourished albino Swiss mice with acute schistosomiasis mansoni. Undernutrition was induced by feeding mice with the Regional Basic Diet (RBD) ingested by human populations in Northeast Brazil, an experimental model previously developed in our laboratory. Weaning mice were infected with 40 cercariae and compared to undernourished non-infected mice and/or to infected mice fed a balanced control diet. Apparent and True Protein Absorption Coefficients were determined by nitrogen balance during five consecutive days ending at the 63rd day of the trial (acute phase of murine schistosomiasis). Fecal metabolic nitrogen (FMN) was determined after administration of a non-protein diet and was also calculated through linear regression. Our results showed a reduced protein absorption in non-infected RBD-fed mice as compared to mice fed a casein control diet. Infection with Schistosoma mansoni had apparently no effect on intestinal protein absorption in well-nourished mice. However, infection seemed to interfere with protein absorption in under-nourished animals, since the lowest absorption ratios have been detected among RBD-fed infected mice. A brief discussion is made on the advantages of using the method of linear regression for the determination of FMN.