975 resultados para ATACTIC POLY(BETA-HYDROXYBUTYRATE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of PHBV, poly(beta -hydroxybutyrate-co-beta -hydrxyvalerate), with nucleating agents under isothermal conditions was investigated. A differential scanning calorimeter was used to monitor the crystallization process from the melt. During isothermal crystallization, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of BN and Tale causes a considerable increase in the overall crystallization rate of PHBV but does not influence the Avrami exponent n, mechanism of nucleation and spherulite growth mode of PHBV. A little of nucleating agent will increase the crystallization rate and decrease the fold surface free energy sigma (e), remarkably. The effect of BN is more significant than that of Talc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility, crystallization behavior and morphological structure of PHB/PMA blends have been studied by the differential scanning calorimeter (DSC) and polarized optical microscopy (POM). The chemical repeat units of the two components of the blend are isomers. The results indicate that PHB and PMA are miscible in the melt. The addition of PMA into PHB results in a depression in the spherulite growth rate of PHB. With increasing PMA content in the blends, the texture of PHB spherulite becomes more open.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyhydroxyalcanoates copolymers with 3-hydroxybutirate (3HB) and 3-hydroxyvalerate (3HV) co-monomers, P3(HB-co-x%HV), were produced in fed-batch culture by Ralstonia eutropha DSM428 using fructose as a single carbon source in the first step and adding propionic acid in the second step by alternating feeding. Polymer yield was 0.18 g/L with a content of 24 mol% of the 3HV fraction determined by H-1 NMR. NMR measurements indicated that the polymer obtained is isotactic. The copolymer attained 35% of crystallinity according to X-ray diffraction measurements, and two (020) planes were observed. Thermal behavior presented melting temperature at 154 degrees C and the crystallization temperature was 65 degrees C. A glass transition temperature was observed at -10 degrees C. Average molecular weight measured by GPC was 4.9 x 10(5) Dalton. Isothermal radial growth rates of spherulites of P3(HB-co-24%HV) were studied. All experimental facts and the analysis of the sequence distribution of diads and triads of 3HB and 3HV units led to the conclusion that it is not a completely statistical random copolymer once it contains different types of segments. POLYM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are biodegradable and renewable polymers produced by a wide range of bacterial groups. New microbial bioprospection approaches have become an important way to find new PHA producers and new synthesized polymers. Over the past years, bacteria belonging to actinomycetes group have become known as PHA producers, such as Nocardia and Rhodococcus species, Kineosphaera limosa Liu et a]. 2002, and, more recently, Streptomyces species. In this paper, we disclose that there are more actinobacteria PHA producers in addition to the genera cited. Some unusual genera, such as Streptoalloteichus, and some genera frequently present in soil, such as Streptacidiphilus, have been found. Thirty-four isolates were able to accumulate poly(3-hydroxybutyrate) and a number of these have traces of poly(3-hydroxyvalerate) when cultivated on glucose or glucose and casein as carbon source. Furthermore, some strains showed traces of medium chain length PHA. Transmission electron microscopy demonstrated that the PHA accumulation occurs in hyphae and spores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anatomy and ultrastructure of root nodules of Anadenanthera peregrina var. falcata (Leguminosae-Mimosoideae) were analysed, as was plant growth. To ensure that nodules developed, seedlings were inoculated with a mixture of six strains of rhizobia. Nodules were produced that differed in appearance-and probably also effectiveness-but their structure was similar and they showed characteristics typical of indeterminate nodules, such as persistent meristematic tissue and a gradient of cells at different stages of development. Many starch grains were present in inner cortex cells and interstitial cells of infected tissue. Infected cells were densely packed with bacteroids, which contained many poly-beta-hydroxybutyrate granules. The high incidence of these granules, together with high levels of starch accumulation in interstitial cells, suggested low N-2-fixation efficiency of the rhizobia isolates used for inoculation. In the symbiosomes of early-senescent infected cells, reticulum-like structures, small vesicles and a fibrillar material were observed; these may be related to bacteroid degradation. In the cytoplasm of late-senescent infected cells, many vesicles and membrane-like structures were observed, probably associated with membrane degradation of bacteroids and peribacteroids. The total biomass of plants inoculated with rhizobia was low and their xylopodia and shoots had low levels of N compared with non-inoculated plants fertilized with ammonium nitrate. However, inoculated plants did not show N-deficiency symptoms and grew better than non-inoculated plants without N fertilization. These growth results, together with ultrastructural observations of nodules, suggest that nitrogen fixation of rhizobia isolates associated with Anadenanthera peregrina var. falcata roots is poor. (C) 2002 Annals of Botany Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work poly(hydroxybutyrate/poly(vinyl butyral)- co-(vinyl alcohol)-co(vinyl acetate) (or ethylene propylene diene monomer rubber) blends were prepared by conventional processing techniques (extrusion and injection moulding). A droplet type morphology was obtained for P(3HB)/PVB blends whereas P(3HB)/EPDM blends presented some extent of co-continuous morphology. In addition, rubbery domains were much smaller in the case of PVB. These differences in morphology are discussed taking into account solubility parameters and rheological behaviours of each component. For both blends, the increase of elastomer ratio led to a decrease of Young's modulus but an increase in elongation at break and impact strength. The latter increased more in the case of P(3HB)/EPDM blends although the rubbery domains were larger. These results are explained in the light of the glass transition of the rubber and the presence of plasticizer in the case of PVB. The addition of elastomer also resulted in an increase of P(3HB) biodegradation rate, especially in the case of EPDM. It is assumed that, in this case, the size and morphology of the rubbery domains induce a geometrical modification of the erosion front which leads to an increase of the interface between P(3HB) phase and the degradation medium and consequently to an apparently faster biodegradation kinetics of PHB/rubber blends. Copyright (C) 2011 Society of Chemical Industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-biocomposites based on a biodegradable bacterial copolyester, poly(hydroxybutyrate-co-hydroxyvalerate), have been elaborated with an organo-modified montmorillonite (OMMT) clay as nanofiller, and acetyl tributyl citrate as plasticizer. The corresponding (nano)structures, thermal and mechanical properties, permeability, and biodegradability have been determined. Polyhydroxyalkanoates are very thermal sensitive then to follow the degradation the corresponding matrices have been analyzed by size exclusion chromatography. The results indicate that the addition of the plasticizer decreases the thermo-mechanical degradation, during the extrusion. These nano-biocomposites show an intercalated/exfoliated structure with good mechanical and barrier properties, and an appropriated biodegradation kinetic. Intending to understand the changes in the thermal properties, the nano-biocomposites were characterized by thermal gravimetric analysis and differential scanning calorimetry. The presence of the OMMT clay did not influence significantly the transition temperatures. However, the filler not only acted as a nucleating agent which enhanced the crystallization, but also as a thermal barrier, improving the thermal stability of the biopolymer. The results indicated that the addition of the plasticizer reduces the glass transition temperature and the crystalline melting temperature. The plasticizer acts as a processing aid and increases the processing temperature range (lower melting temperature).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of non-planarity of the peptide unit on helical structures stabilized by intrachain hydrogen bonds is discussed. While the present calculations generally agree with those already reported in the literature for right-handed helical structures, it is found that the most stable left-handed structure is a novel helix, called the delta-helix. Its helical parameters are close to these reported for poly-beta-benzyl-L -aspartate. Conformational energy calculations show that poly-beta-benzyl-L -aspartate with the delta-helical structure is considerably more stable than the structure it is generally believed to take up (the omega-helix) by about 15 kcal/mol-residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-based polyurethanes (PCL-PEG-PU) with pendant amino groups was synthesized by direct coupling of PEG ester of NH2-protected-(aspartic acid) (PEG-Asp-PEG diols) and poly(epsilon-caprolactone) (PCL) diols with hexamethylene dissocyanate (HDI) under mild reaction conditions and by subsequent deprotection of benzyloxycarbonyl (Cbz) groups. GPC, H-1 NMR, and C-13 NMR studies confirmed the polymer structures and the complete deprotection. DSC and WXRD results indicated that the crystallinity of the copolymer was enhanced with increasing PCL diols in the copolymer. The content of amino group in the polymer could be adjusted by changing the molar ratio of PEG-Asp-PEG diols to PCL diols. Thus the results of this study provide a good way to prepare polyurethanes bearing hydrophilic PEG segments and reactive amino groups without complicated synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermolecular hydrogen bonds, miscibility, crystallization and thermal stability of the blends of biodegradable poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-3HHx)] with 4,4-dihydroxydiphenylpropane (DOH2) were investigated by FTIR, C-13 Solid state NMR, DSC, WAXD and TGA. Intermolecular hydrogen bonds were found in both blend systems, which resulted from the carbonyl groups in the amorphous phase of both polyesters and the hydroxyl groups of DOH2. The intermolecular interaction between P(3HB-3HHx) and DOH2 is weaker than that between PHB and DOH2 owing to the steric hindrance of longer 3HHx side chains. Because of the effect of the hydrogen bonds, the chain mobility of both PHB and P(3HB-3HHx) components was limited after blending with DOH2 molecules. Single glass transition temperature depending on the composition was observed in all blends, indicating that those blends were miscible in the melt. The addition of DOH2 suppressed the crystallization of PHB and P(3HB-3HHx) components. Moreover, the crystallinity of PHB and P(3HB-3HHx) components also decreased with increasing DOH2 content in the blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maleic anhydride end capped poly(propylene carbonate) (PPC-MA) was blended with ethyl cellulose (EC) by casting from dichloromethane solutions. The thermotropic liquid crystallinity, thermal decomposition behavior, and aggregated structure were investigated by differential scanning calorimetry (DSC), thermogravimetry (TGA), and wide angle X-ray diffraction (WAXD). DSC exhibits thermotropic liquid crystallinity in the rich EC composition range. TGA shows that thermal decomposition temperatures were elevated upon interfusing EC into PPC-MA. WAXD corroborates that EC and PPC-MA/EC blend films cast from dilute dichloromethane solution possessed cholesteric liquid crystalline structure in the rich EC composition range, and that dilution of PPC-MA with EC increased the dimension of noncrystalline region, leading to a more ordered packed structure.