744 resultados para ASPERGILLUS OCHRACEUS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

以直接和间接作用的方式研究培养基中黑曲霉Aspergillus niger对磷矿粉的风化作用。在装有100目磷矿石粉的液体培养基中接入该菌研究其对磷矿石粉的直接风化作用;同时将装有100目磷矿石粉的透析袋放入液体培养基中再接入该菌研究其对磷矿石粉的间接风化作用。按不同时间取培养液上清液,用电感耦合等离子体-发射光谱仪测定Ca2+、Mg2+、Al3+、Fe3+、K+和Mn2+浓度,用离子色谱法测定H2PO4-、SO42-和Cl-浓度。此外,黑曲霉风化作用后的矿物残渣用电子探针作表面微观形态分析和XRD矿物物相分析。结果表明:黑曲霉对磷矿石粉风化作用的直接作用强度大于间接作用;

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pectinase was identified and isolated from a commercial Aspergillus niger pectinase preparation. The crude enzyme preparation, which was prepared by precipitation of the water extract of the culture of A. niger with ammonium sulfate, was further fractionated by three steps of chromatography, i. e., cation exchange, hydrophobic interaction and onion exchange, to obtain an electrophoretically homogeneous pectinase. The molecular weight of the purified enzyme was estimated by SDS-PAGE to be about 40.4 kDa under both nonreducing and reducing conditions, with the optimum pH at 5.0 and the optimum temperature at 36C. The enzyme was stable at temperatures below 35C. The partial N-terminal ammo acid sequence data analysis of the first 19 amina acids of the obtained pectinase revealed 94.7% and 89.5% homology with two reported pectinases from A. niger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
The identification of filamentous fungi and/or yeasts in the airway secretions of individuals with cystic fibrosis (CF) is becoming increasingly prevalent; yet the importance of these organisms in relation to underlying inflammation is poorly defined.

Methods
Cystic fibrosis bronchial epithelial cells (CFBE) and human bronchial epithelial cells (HBE) were co-incubated with Candida albicans whole cells or Aspergillus fumigatus conidia for 24 h prior to the measurement of pro-inflammatory cytokines IL-6 and IL-8 by ELISA.

Results
Treatment of HBE or CFBE with C. albicans whole cells did not alter cytokine secretion. However treatment of CFBE with A. fumigatus conidia resulted in a 1.45-fold increase in IL-6 and a 1.65-fold increase in IL-8 secretion in comparison to basal levels; in contrast there was far less secretion from HBE cells.

Conclusion
Our data indicate that A. fumigatus infection modulates a pro-inflammatory response in CF epithelial cells while C. albicans does not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of superficial air velocity on lovastatin production by Aspergillus terreus PL10 using wheat bran and wheat straw was investigated in a 7 l and a 1200 l packed bed reactor. Mass transfer and reaction limitations on bioconversion in the 1200 l reactor was studied based on a central composite design of experiments constructed using the superficial air velocity and solid substrate composition as variables and lovastatin production as response.
The surface response prediction showed a maximum lovastatin production of 1.86 mg g-1 dry substrate on day 5 of the bioconversion process when the reactor was operated using 0.19 vvm airflow rate (23.37 cm min-1 superficial air velocity) and 54% substrate composition (wC). Lovastatin production did not increase significantly with superficial air velocity in the 7 l reactor. Variation in temperature and exit CO2 composition was recorded, and the Damköhler number was calculated for lovastatin production at these two scales. The results showed that in larger reactors mass transfer limitation controlled bioconversion while in smaller reactors bioconversion was controlled by reaction rate limitations. In addition, mass transfer limitations in larger reactors reduced the rate of metabolic heat removal, resulting in hot spots within the substrate bed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac myxomas are rare primary tumors with varied clinical presentations that may pose a diagnostic challenge. Here, we describe the case of a 21-year-old man with multiple cavitating lung lesions with aspergillosis and underlying right atrial myxoma, who presented with hemoptysis and weight loss. He was successfully treated with right atrial myxoma resection and antifungal agents, with no recurrence or complications after one year of follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228–259, 2015a, doi:10.​1016/​j.​copbio.​2015.​02.​010; Ball and Hallsworth in Phys Chem Chem Phys 17:8297–8305, 2015, doi:10.​1039/​C4CP04564E; Cray et al. in Environ Microbiol 15:287–296, 2013a, doi:10.​1111/​1462-2920.​12018). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight−1. Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of chaotropicity at physiologically relevant concentrations (20.0–85.7 kJ kg−1). We hypothesized that the kosmotropicity of compatible solutes can neutralize chaotropicity, and tested this via in-vitro agar-gelation assays for the model chaotropes urea, NH4NO3, phenol and MgCl2. Of the kosmotropic compatible solutes, the most-effective protectants were trimethylamine oxide and betaine; but proline, dimethyl sulfoxide, sorbitol, and trehalose were also effective, depending on the chaotrope. Glycerol, by contrast (a chaotropic compatible solute used as a negative control) was relatively ineffective. The kosmotropic activity of compatible solutes is discussed as one mechanism by which these substances can mitigate the activities of chaotropic stressors in vivo. Collectively, these data demonstrate that some substances concomitantly induce chaotropicity-mediated and osmotic stresses, and that compatible solutes ultimately define the biotic window for fungal growth and metabolism. The findings have implications for the validity of ecophysiological classifications such as ‘halophile’ and ‘polyextremophile’; potential contamination of life-support systems used for space exploration; and control of mycotoxigenic fungi in the food-supply chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we propose a green route to prepare poly(3-hydroxybutyrate) [(P(3HB)] grafted ethyl cellulose (EC) based green composites with novel characteristics through laccase-assisted grafting. P(3HB) was used as a side chain whereas, EC as a backbone material under an ambient processing conditions. A novel laccase obtained from Aspergillus niger through its heterologous expression in Saccharomyces cerevisiae was used as a green catalyst for grafting purposes without the use of additional initiator and/or cross-linking agents. Subsequently, the resulting P(3HB)-g-EC composites were characterized using a range of analytical and imagining techniques. Fourier transform infrared spectroscopy (FT-IR) spectra showed an increase in the hydrogen-bonding type interactions between the side chains of P(3HB) and backbone material of EC. Evidently, X-ray diffraction (XRD) analysis revealed a decrease in the crystallinity of the P(3HB)-g-EC composites as compared to the pristine individual polymers. A homogeneous P(3HB) distribution was also achieved in case of the graft composite prepared in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator along with laccase as compared to the composite prepared using pure laccase alone. A substantial improvement in the thermal and mechanical characteristics was observed for grafted composites up to the different extent as compared to the pristine counterparts. The hydrophobic/hydrophilic properties of the grafted composites were better than those of the pristine counterparts.