973 resultados para AORTIC ENDOTHELIAL-CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Besides tumor cells, the tumor microenvironment harbors a variety of host-derived cells, such as endothelial cells, fibroblasts, innate and adaptive immune cells. It is a complex and highly dynamic environment, providing very important cues to tumor development and progression. Tumor-associated endothelial cells play a key role in this process. On the one hand, they form tumor-associated (angiogenic) vessels through sprouting from locally preexisting vessels or recruitment of bone marrow-derived endothelial progenitor cells, to provide nutritional support to the growing tumor. On the other hand, they are the interface between circulating blood cells, tumor cells and the extracellular matrix, thereby playing a central role in controlling leukocyte recruitment, tumor cell behavior and metastasis formation. Hypoxia is a critical parameter modulating the tumor microenvironment and endothelial/tumor cell interactions. Under hypoxic stress, tumor cells produce factors that promote tumor angiogenesis, tumor cell motility and metastasis. Among these factors, VEGF, a main angiogenesis modulator, can also play a critical role in the control of immune tolerance. This review discusses some aspects of the role of endothelial cells within tumor microenvironment and emphasizes their interaction with tumor cells, the extracellular matrix and with immune killer cells. We will also address the role played by circulating endothelial progenitor cells and illustrate their features and mechanism of recruitment to the tumor microenvironment and their role in tumor angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Connexin37 (Cx37) and Cx40 are crucial for endothelial cell-cell communication and homeostasis. Both connexins interact with endothelial nitric oxide synthase (eNOS). The exact contribution of these interactions to the regulation of vascular tone is unknown. RESULTS: Cx37 and Cx40 were expressed in close proximity to eNOS at cell-cell interfaces of mouse aortic endothelial cells. Absence of Cx37 did not affect expression of Cx40 and a 50 % reduction of Cx40 in Cx40(+/-) aortas did not affect the expression of Cx37. However, absence of Cx40 was associated with reduced expression of Cx37. Basal NO release and the sensitivity for ACh were decreased in Cx37(-/-) and Cx40(-/-) aortas but not in Cx40(+/-) aortas. Moreover, ACh-induced release of constricting cyclooxygenase products was present in WT, Cx40(-/-) and Cx40(+/-) aortas but not in Cx37(-/-) aortas. Finally, agonist-induced NO-dependent relaxations and the sensitivity for exogenous NO were not affected by genotype. CONCLUSIONS: Cx37 is more markedly involved in basal NO release, release of cyclooxygenase products and the regulation of the sensitivity for ACh as compared to Cx40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) has been shown to exert cytotoxic effects on tumor cells. We have reported that EC219 cells, a rat-brain-microvessel-derived endothelial cell line, produced NO through cytokine-inducible NO synthase (iNOS), the induction of which was significantly decreased by (a) soluble factor(s) secreted by DHD/PROb, an invasive sub-clone of a rat colon-carcinoma cell line. In this study, the DHD/PROb cell-derived NO-inhibitory factor was characterized. Northern-blot analysis demonstrated that the induction of iNOS mRNA in cytokine-activated EC219 cells was decreased by PROb-cell-conditioned medium. When DHD/PROb cell supernatant was fractionated by affinity chromatography using Con A-Sepharose or heparin-Sepharose, the NO-inhibitory activity was found only in Con A-unbound or heparin-unbound fractions, respectively, indicating that the PROb-derived inhibitory factor was likely to be a non-glycosylated and non-heparin-binding molecule. Pre-incubation of DHD/PROb-cell supernatant with anti-TGF-beta neutralizing antibody completely blocked the DHD/PROb-derived inhibition of NO production by EC219 cells. Addition of exogenous TGF-beta 1 dose-dependently inhibited NO release by EC219 cells. The presence of active TGF-beta in the DHD/PROb cell supernatant was demonstrated using a growth-inhibition assay. Moreover, heat treatment of medium conditioned by the less invasive DHD/REGb cells, which constitutively secreted very low levels of active TGF-beta, increased both TGF-beta activity and the ability to inhibit NO production in EC219 cells. Thus, DHD/PROb colon-carcinoma cells inhibited NO production in EC219 cells by secreting a factor identical or very similar to TGF-beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten male, 12-month-old Jersey with intact spleens, serologically and parasitologically free from Babesia were housed individually in an arthropod-free isolation system from birth and throughout entire experiment. The animals were randomly divided into two groups. Five animals (group A) were intravenously inoculated with 6.6 X10(7) red blood cells parasitized with pathogenic sample of Babesia bovis (passage 7 BboUFV-1), for the subsequent "ex vivo" determination of the expression of adhesion molecules. Five non-inoculated animals (group B) were used as the negative control. The expression of the adhesion molecules ICAM-1, VCAM, PECAM-1 E-selectin and thrombospondin (TSP) was measured in bovine umbilical vein endothelial cells (BUVECs). The endothelial cells stimulated with a pool of plasma from animals infected with the BboUFV-1 7th passage sample had a much more intense immunostaining of ICAM-1, VCAM, PECAM-1 E-selectin and TSP, compared to the cells which did not received the stimulus. The results suggest that proinflammatory cytokines released in the acute phase of babesiosis may be involved in the expression of adhesion molecules thereby implicating them in the pathophysiology of babesiosis caused by B. bovis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia activates endothelial cells by the action of reactive oxygen species generated in part by cyclooxygenases (COX) production enhancing leukocyte transmigration. We investigated the effect of specific COX inhibition on the function of endothelial cells exposed to hypoxia. Mouse immortalized endothelial cells were subjected to 30 min of oxygen deprivation by gas exchange. Acridine orange/ethidium bromide dyes and lactate dehydrogenase activity were used to monitor cell viability. The mRNA of COX-1 and -2 was amplified and semi-quantified before and after hypoxia in cells treated or not with indomethacin, a non-selective COX inhibitor. Expression of RANTES (regulated upon activation, normal T cell expressed and secreted) protein and the protective role of heme oxygenase-1 (HO-1) were also investigated by PCR. Gas exchange decreased partial oxygen pressure (PaO2) by 45.12 ± 5.85% (from 162 ± 10 to 73 ± 7.4 mmHg). Thirty minutes of hypoxia decreased cell viability and enhanced lactate dehydrogenase levels compared to control (73.1 ± 2.7 vs 91.2 ± 0.9%, P < 0.02; 35.96 ± 11.64 vs 22.19 ± 9.65%, P = 0.002, respectively). COX-2 and HO-1 mRNA were up-regulated after hypoxia. Indomethacin (300 µM) decreased COX-2, HO-1, hypoxia-inducible factor-1alpha and RANTES mRNA and increased cell viability after hypoxia. We conclude that blockade of COX up-regulation can ameliorate endothelial injury, resulting in reduced production of chemokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II (Ang II) plays a crucial role in the pathogenesis of renal diseases. The objective of the present study was to investigate the possible inflammatory effect of Ang II on glomerular endothelial cells and the underlying mechanism. We isolated and characterized primary cultures of rat glomerular endothelial cells (GECs) and observed that Ang II induced the synthesis of monocyte chemoattractant protein-1 (MCP-1) in GECs as demonstrated by Western blot. Ang II stimulation, at concentrations ranging from 0.1 to 10 µm, of rat GECs induced a rapid increase in the generation of reactive oxygen species as indicated by laser fluoroscopy. The level of p47phox protein, an NAD(P)H oxidase subunit, was also increased by Ang II treatment. These effects of Ang II on GECs were all reduced by diphenyleneiodonium (1.0 µm), an NAD(P)H oxidase inhibitor. Ang II stimulation also promoted the activation of nuclear factor-kappa B (NF-κB). Telmisartan (1.0 µm), an AT1 receptor blocker, blocked all the effects of Ang II on rat GECs. These data suggest that the inhibition of NAD(P)H oxidase-dependent NF-κB signaling reduces the increase in MCP-1 production by GECs induced by Ang II. This may provide a mechanistic basis for the benefits of selective AT1 blockade in dealing with chronic renal disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.