970 resultados para AMMONIFYING BACTERIA
Resumo:
Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance and lifetime and cause contamination and impaired quality of the industrial product. In this thesis we studied bacterial adherence to abiotic surfaces by using coupons of stainless steel coated or not coated with fluoropolymer or diamond like carbon (DLC). As model organisms we used bacterial isolates from paper machines (Meiothermus silvanus, Pseudoxanthomonas taiwanensis and Deinococcus geothermalis) and also well characterised species isolated from medical implants (Staphylococcus epidermidis). We found that coating of steel surface with these materials reduced its tendency towards biofouling: Fluoropolymer and DLC coatings repelled all four biofilm formers on steel. We found great differences between bacterial species in their preference of surfaces to adhere as well as their ultrastructural details, like number and thickness of adhesion organelles they expressed. These details responded differently towards the different surfaces they adhered to. We further found that biofilms of D. geothermalis formed on titanium dioxide coated coupons of glass, steel and titanium, were effectively removed by photocatalytic action in response to irradiation at 360 nm. However, on non-coated glass or steel surfaces irradiation had no detectable effect on the amount of bacterial biomass. We showed that the adhesion organelles of bacteria on illuminated TiO2 coated coupons were complety destroyed whereas on non-coated coupons they looked intact when observed by microscope. Stainless steel is the most widely used material for industrial process equipments and surfaces. The results in this thesis showed that stainless steel is prone to biofouling by phylogenetically distant bacterial species and that coating of the steel may offer a tool for reduced biofouling of industrial equipment. Photocatalysis, on the other hand, is a potential technique for biofilm removal from surfaces in locations where high level of hygiene is required. Our study of natural biofilms on barley kernel surfaces showed that also there the microbes possessed adhesion organelles visible with electronmicroscope both before and after steeping. The microbial community of dry barley kernels turned into a dense biofilm covered with slimy extracellular polymeric substance (EPS) in the kernels after steeping in water. Steeping is the first step in malting. We also presented evidence showing that certain strains of Lactobacillus plantarum and Wickerhamomyces anomalus, when used as starter cultures in the steeping water, could enter the barley kernel and colonise the tissues of the barley kernel. By use of a starter culture it was possible to reduce the extensive production of EPS, which resulted in a faster filtration of the mash.
Resumo:
Bacteria isolated from the rhizosphere of mulberry (Morus indica) as well as from control soil were tested for their effects on the growth of mulberry seedlings and for phytohormone production. About 12.8 per cent of the rhizosphere and 9.7 per cent of the soil isolates produced phytohormones in cultures. Rhizosphere isolates were more active in hormone synthesis than their soil counterparts. Soaking mulberry stem cuttings in culture filtrates of phytohormone synthesisers hastened their rooting. Culture filtrates of many isolates — hormone producers or not — stimulated or inhibited the growth of shoot and/or root of plants. Many cultures could also inhibit the germination of mulberry seeds.
Resumo:
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment.The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dynamics of raw milk associated bacteria during cold storage of raw milk and their antibiotic resistance was reviewed, with focus on psychrotrophic bacteria. This study aimed to investigate the significance of cold storage of raw milk on antibiotic-resistant bacterial population and analyse the antibiotic resistance of the Gram-negative antibiotic-resistant psychrotrophic bacteria isolated from the cold-stored raw milk samples. Twenty-four raw milk samples, six at a time, were obtained from lorries that collected milk from Finnish farms and were stored at 4°C/4 d, 6°C/3 d and 6°C/4 d. Antibiotics representing four classes of antibiotics (gentamicin, ceftazidime, levofloxacin and trimethoprim-sulfamethoxazole) were used to determine the antibiotic resistance of mesophilic and psychrotrophic bacteria during the storage period. A representative number of antibiotic-resistant Gram-negative isolates retrieved from the cold-stored raw milk samples were identified by the phenotypic API 20 NE system and a few isolates by the 16S rDNA gene sequencing. Some of the isolates were further evaluated for their antibiotic resistance by the ATB PSE 5 and HiComb system. The initial average mesophilic counts were found below 105 CFU/mL, suggesting that the raw milk samples were of good quality. However, the mesophilic and psychrotrophic population increased when stored at 4°C/4 d, 6°C/3 d and 6°C/4 d. Gentamicin- and levofloxacin-resistant bacteria increased moderately (P < 0.05) while there was a considerable rise (P < 0.05) of ceftazidime- and trimethoprim-sulfamethoxazole-resistant population during the cold storage. Of the 50.9 % (28) of resistant isolates (total 55) identified by API 20 NE, the majority were Sphingomonas paucimobilis (8), Pseudomonas putida (5), Sphingobacterium spiritivorum (3) and Acinetobacter baumanii (2). The analysis by ATB PSE 5 system suggested that 57.1% of the isolates (total 49) were multiresistant. This study showed that the dairy environment harbours multidrug-resistant Gramnegative psychrotrophic bacteria and the cold chain of raw milk storage amplifies the antibioticresistant psychrotrophic bacterial population.
Resumo:
Bacteria growing in paper machines can cause several problems. Biofilms detaching from paper machine surfaces may lead to holes and spots in the end product or even break the paper web leading to expensive delays in production. Heat stable endospores will remain viable through the drying section of paper machine, increasing the microbial contamination of paper and board. Of the bacterial species regularly found in the end products, Bacillus cereus is the only one classified as a pathogen. Certain B. cereus strains produce cereulide, the toxin that causes vomiting disease in food poisonings connected to B. cereus. The first aim of this thesis was to identify harmful bacterial species colonizing paper machines and to assess the role of bacteria in the formation of end product defects. We developed quantitative PCR methods for detecting Meiothermus spp. and Pseudoxanthomonas taiwanensis. Using these methods I showed that Meiothermus spp. and Psx. taiwanensis are major biofoulers in paper machines. I was the first to be able to show the connection between end product defects and biofilms in the wet-end of paper machines. I isolated 48 strains of primary-biofilm forming bacteria from paper machines. Based on one of them, strain K4.1T, I described a novel bacterial genus Deinobacterium with Deinobacterium chartae as the type species. I measured the transfer of Bacillus cereus spores from packaging paper into food. To do this, we constructed a green fluorescent protein (GFP) labelled derivative of Bacillus thuringiensis and prepared paper containing spores of this strain. Chocolate and rice were the recipient foods when transfer of the labelled spores from the packaging paper to food was examined. I showed that only minority of the Bacillus cereus spores transferred into food from packaging paper and that this amount is very low compared to the amount of B. cereus naturally occurring in foods. Thus the microbiological risk caused by packaging papers is very low. Until now, the biological function of cereulide for the producer cell has remained unknown. I showed that B. cereus can use cereulide to take up K+ from environment where K+ is scarce: cereulide binds K+ ions outside the cell with high affinity and transports these ions across cell membrane into the cytoplasm. Externally added cereulide increased the growth rate of cereulide producing strains in medium where potassium was growth limiting. In addition, cereulide producing strains outcompeted cereulide non-producing B. cereus in potassium deficient environment, but not when the potassium concentration was high. I also showed that cereulide enhances biofilm formation of B. cereus.
Resumo:
Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.
Resumo:
Thirteen terrestrial psychrotrophic bacteria from Antarctica were screened for the presence of a thermolabile ribonuclease (RNAase-HL). The enzyme was detected in three isolates of Pseudomonas fluorescens and one isolate of Pseudomonas syringae. It was purified from one P. Fluorescens isolate and the molecular mass of the enzyme as determined by SDS-PAGE was 16 kDa. RNAase-HL exhibited optimum activity around 40 degrees C at pH 7.4. It could hydrolyse Escherichia coli RNA and the synthetic substrates poly(A), poly(C), poly(U) and poly(A-U). Unlike the crude RNAase from mesophilic P. Fluorescens and pure bovine pancreatic RNAase A which were active even at 65 degrees C, RNAase-HL was totally and irreversibly inactivated at 65 degrees C.
Resumo:
Molecular understanding of disease processes can be accelerated if all interactions between the host and pathogen are known. The unavailability of experimental methods for large-scale detection of interactions across host and pathogen organisms hinders this process. Here we apply a simple method to predict protein-protein interactions across a host and pathogen organisms. We use homology detection approaches against the protein-protein interaction databases. DIP and iPfam in order to predict interacting proteins in a host-pathogen pair. In the present work, we first applied this approach to the test cases involving the pairs phage T4 - Escherichia coli and phage lambda - E. coli and show that previously known interactions could be recognized using our approach. We further apply this approach to predict interactions between human and three pathogens E. coli, Salmonella enterica typhimurium and Yersinia pestis. We identified several novel interactions involving proteins of host or pathogen that could be thought of as highly relevant to the disease process. Serendipitously, many interactions involve hypothetical proteins of yet unknown function. Hypothetical proteins are predicted from computational analysis of genome sequences with no laboratory analysis on their functions yet available. The predicted interactions involving such proteins could provide hints to their functions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The surface properties of coal and solution pH play a major role in determining the adhesion of microorganisms. In this study, three Indian coal samples with different compositions have been used and the adhesion of the bacterium Bacillus polymyxa to these coals has been investigated. It was found that due to the high ash content of coal, the zeta-potential was negative over most of the pH range which is close to the values exhibited by pure quartz as well as B. polymyxa. Similarly, the surface free energy components of coal (derived from contact angle measurements) showed that the electron-donor component increased with ash content. Adhesion experiments revealed that maximum adhesion of the bacterium B. polymyxa occurred on to the coal samples around the point-of-zero-charge of the coal and the bacterium i.e. about pH 2. Further, adhesion was found to be dependent on the ash content and the surface free energy of the coals. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Most bacterial genomes harbor restriction-modification systems, encoding a REase and its cognate MTase. On attack by a foreign DNA, the REase recognizes it as nonself and subjects it to restriction. Should REases be highly specific for targeting the invading foreign DNA? It is often considered to be the case. However, when bacteria harboring a promiscuous or high-fidelity variant of the REase were challenged with bacteriophages, fitness was maximal under conditions of catalytic promiscuity. We also delineate possible mechanisms by which the REase recognizes the chromosome as self at the noncanonical sites, thereby preventing lethal dsDNA breaks. This study provides a fundamental understanding of how bacteria exploit an existing defense system to gain fitness advantage during a host-parasite coevolutionary ``arms race.''
Resumo:
Bacteria present in natural environments such as soil have evolved multiple strategies to escape predation. We report that natural isolates of Enterobacteriaceae that actively hydrolyze plant-derived aromatic beta-glucosides such as salicin, arbutin and esculin, are able to avoid predation by the bacteriovorous amoeba Dictyostelium discoideum and nematodes of multiple genera belonging to the family Rhabditidae. This advantage can be observed under laboratory culture conditions as well as in the soil environment. The aglycone moiety released by the hydrolysis of beta-glucosides is toxic to predators and acts via the dopaminergic receptor Dop-1 in the case of Caenorhabditis elegans. While soil isolates of nematodes belonging to the family Rhabditidae are repelled by the aglycone, laboratory strains and natural isolates of Caenorhabditis sp. are attracted to the compound, mediated by receptors that are independent of Dop-1, leading to their death. The b-glucosides-positive (Bgl(+)) bacteria that are otherwise non-pathogenic can obtain additional nutrients from the dead predators, thereby switching their role from prey to predator. This study also offers an evolutionary explanation for the retention by bacteria of `cryptic' or `silent' genetic systems such as the bgl operon.
Resumo:
An industrial waste liquor having high sulfate concentrations was subjected to biological treatment using the sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans. Toxicity levels of different sulfate, cobalt and nickel concentrations toward growth of the SRB with respect to biological sulfate reduction kinetics was initially established. Optimum sulfate concentration to promote SRB growth amounted to 0.8 - 1 g/L. The strain of D. desulfuricans used in this study initially tolerated up to 4 -5 g/L of sulfate or 50 mg/L of cobalt and nickel, while its tolerance could be further enhanced through adaptation by serial subculturing in the presence of increasing concentrations of sulfate, cobalt and nickel. From the waste liquor, more than 70% of sulfate and 95% of cobalt and nickel could be precipitated as sulfides, using a preadapted strain of D. desulfuricans. Probable mechanisms involving biological sulfide precipitation and metal adsorption onto precipitates and bacterial cells are discussed.