899 resultados para ALUMINUM ELECTRODE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electric field in certain electrostatic devices can be modeled by a grounded plate electrode affected by a corona discharge generated by a series of parallel wires connected to a DC high-voltage supply. The system of differential equations that describe the behaviour (i.e., charging and motion) of the conductive particle in such an electric field has been numerically solved, using several simplifying assumptions. Thus, it was possible to investigate the effect of various electrical and mechanical factors on the trajectories of conductive particles. This model has been employed to study the behaviour of coalparticles in fly-ash corona separators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is proposed to solve for the growth as well as the movement of hydrogen bubbles during solidification in aluminum castings. A level-set methodology has been adopted to handle this multiphase phenomenon. A microscale domain is considered and the growth and movement of hydrogen bubbles in this domain has been studied. The growth characteristics of hydrogen bubbles have been evaluated under free growth conditions in a melt having a hydrogen input caused b solidification occurring around the microdomain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-5 wt pct Si alloy is processed by upset forging in the temperature range 300 K to 800 K and in the strain rate range 0.02 to 200 s−1. The hardness and tensile properties of the product have been studied. A “safe” window in the strain rate-temperature field has been identified for processing of this alloy to obtain maximum tensile ductility in the product. For the above strain rate range, the temperature range of processing is 550 K to 700 K for obtaining high ductility in the product. On the basis of microstructure and the ductility of the product, the temperature-strain rate regimes of damage due to cavity formation at particles and wedge cracking have been isolated for this alloy. The tensile fracture features recorded on the product specimens are in conformity with the above damage mechanisms. A high temperature treatment above ≈600 K followed by fairly fast cooling gives solid solution strengthening in the alloy at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative expression has been obtained for the equivalent resistance of an internal short in rechargeable cells under constant voltage charging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marked changes in the LVV/LMV and LVV/LMM Auger intensity ratios of Co, Ni and Cu are observed on depositing Al on their surfaces. These changes, ascribed to charge-transfer or hybridization effects, are accompanied by changes in the intensity of the satellites next to the core levels of the transition metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium iodide reduces sulphonyl chlorides to disulphides and sulphoxides to sulphides under mild conditions in acetonitrile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-silicon alloy pins were slid against steel disks under nominally dry condition at a speed of 0.6 m s-1. Each pin was slid at a constant load for 5 min, the load being increased in suitable steps from 2 to 65 N. The results show the wear to increase almost monotonically with load, to be sensitive to the presence of silicon in the alloy, and to be insensitive to actual silicon content. The monotonic nature of wear rate-load characteristic suggests that one dominant wear mechanism prevails over the load range studied. Morphological studies of the pin surface and the debris support this contention and point to delamination as being the dominant mode of wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of crystallographic texture has been comprehensively studied for commercially pure Al as a function of amount of ECAE deformation for the three major routes of ECAE processing. It has been observed that processing through different routes leads to different type of texture, in both qualitative as well as quantitative sense. The results have been analyzed on the basis of existing concepts on ECAE deformation and simulations have been carried out using the simple shear model of ECAE implemented into the Viscoplastic Self Consistent model of polycrystal plasticity. The simulations revealed that non-octahedral slip is needed to reproduce the experimental texture development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the effect of adsorption of inert molecules on electrode reaction rates is completely accounted for, by introducing into the rate equation, adsorption-induced changes in both the effective electrode area as well as in the electrostatic potential at the reaction site with an additional term for the noncoulombic interaction between the reactant and the adsorbate. The electrostatic potential at the reaction site due to the adsorbed layer is calculated using a model of discretely-distributed molecules in parallel orientation when adsorbed on the electrode with an allowance for thermal agitation. The resulting expression, which is valid for the limiting case of low coverages, is used to predict the types of molecular surfactants that are most likely to be useful for acceleration and inhibition of electrode reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damping capacity of cast graphitic aluminum alloy composites has been measured using a torsion pendulum at a constant strain amplitude. It was found that flake-graphite particles dispersed in the matrix of aluminum alloys increased the damping capacity; the improvement was greater, the higher the amount of graphite dispersed in the matrix. At sufficiently high graphite contents the damping capacity of graphitic aluminum composites approaches that of cast iron. The ratio between the damping capacity and the density of graphitic aluminum alloys is higher than cast iron, making them very attractive as light-weight, high-damping materials for possible aircraft applications. Machinability tests on graphite particle-aluminum composites, conducted at speeds of 315 sfm and 525 sfm, showed that the chip length decreased with the amount of graphite of a given size. When the size of graphite was decreased, at a given machining speed, the chip length decreased. Metallographic examination shows that graphite particles act as chip breakers, and are frequently sheared parallel to the plane of the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the same current-time (I-t) curves, electrochemical kinetic parameters are determined by two methods, (a) using the ratio of current at a given potential to the diffusion-controlled limiting current and (b) curve fitting method, for the reduction of Cu(II)–CyDTA complex. The analysis by the method (a) shows that the rate determining step involves only one electron although the overall reduction of the complex involves two electrons suggesting thereby the stepwise reduction of the complex. The nature of I-t curves suggests the adsorption of intermediate species at the electrode surface. Under these circumstances more reliable kinetic parameters can be obtained by the method (a) compared to that of (b). Similar observations are found in the case of reduction of Cu(II)–EDTA complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-Nickel alloys ranging from 0.06 pct to 6.1 pct (by wt) Ni have been developed for high strength-high conductivity applications. These alloys were produced by solidification in a permanent mold followed by homogenization, hot extrusion or hot rolling and cold drawing to wire form. This sequence of fabrication a) led to the production of fine fibrous dispersoids of NiAl3 as part of the Al-NiAl3 eutectic during the initial casting operation, b) permitted the retention of fine fibrous dispersiods of NiAl3 produced during casting without any significant coarsening during processing and c) led to uniform dispersion and general alignment of these fibrous dispersoids along a given direction in the product without any measurable fiber-matrix separation, extensive fiber-fragmentation or crack production in the matrix. These alloys can be processed to wire form as easily as aluminum and when processed by the above sequence, possess very attractive combination of high strength-high electrical conductivity. Tensile strengths range from 173 N/mm2 (at 0.6 pct Ni) to 241 N/mm2 (at 6.1 pct Ni) in combination with corresponding conductivity values between 62 pct IACS and 55.5 pct IACS. The wires also possess attractive yield strength; for instance, the 0.2 pct off-set strength of Al-6.1 pct Ni wire is 213 N/mm2. Using simple composite rules, the estimated strength and the conductivity of NiAl3 fibers were found to be 1380 N/mm2 and 18 pct IACS respectively, in these wires.