874 resultados para 670 Manufacturing
Resumo:
Learning capability (LC) is a special dynamic capability that a firm purposefully builds to develop a cognitive focus, so as to enable the configuration and improvement of other capabilities (both dynamic and operational) to create and respond to market changes. Empirical evidence regarding the essential role of LC in leveraging operational manufacturing capabilities is, however, limited in the literature. This study takes a routine-based approach to understand capability, and focuses on demonstrating leveraging power of LC upon two essential operational capabilities within the manufacturing context, i.e., operational new product development capability (ONPDC), and operational supplier integration capability (OSIC). A mixed-methods research framework was used, which combines sources of evidence derived from a survey study and a multiple case study. This study identified high-level routines of LC that can be designed and controlled by managers and practitioners, to reconfigure underlying routines of ONPDC and OSIC to achieve superior performance in a turbulent environment. Hence, the study advances the notion of knowledge-based dynamic capabilities, such as LC, as routine bundles. It also provides an impetus for managing manufacturing operations from a capability-based perspective in the fast changing knowledge era.
Resumo:
Deterministic computer simulation of physical experiments is now a common technique in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This paper aims to discuss some practical issues when designing a computer simulation and/or experiments for manufacturing systems. A case study approach is reviewed and presented.
Resumo:
Lean strategies have been developed to eliminate or reduce manufacturing waste and thus improve operational efficiency in manufacturing processes. However, implementing lean strategies requires a large amount of resources and, in practice, manufacturers encounter difficulties in selecting appropriate lean strategies within their resource constraints. There is currently no systematic methodology available for selecting appropriate lean strategies within a manufacturer's resource constraints. In the lean transformation process, it is also critical to measure the current and desired leanness levels in order to clearly evaluate lean implementation efforts. Despite the fact that many lean strategies are utilized to reduce or eliminate manufacturing waste, little effort has been directed towards properly assessing the leanness of manufacturing organizations. In practice, a single or specific group of metrics (either qualitative or quantitative) will only partially measure the overall leanness. Existing leanness assessment methodologies do not offer a comprehensive evaluation method, integrating both quantitative and qualitative lean measures into a single quantitative value for measuring the overall leanness of an organization. This research aims to develop mathematical models and a systematic methodology for selecting appropriate lean strategies and evaluating the leanness levels in manufacturing organizations. Mathematical models were formulated and a methodology was developed for selecting appropriate lean strategies within manufacturers' limited amount of available resources to reduce their identified wastes. A leanness assessment model was developed by using the fuzzy concept to assess the leanness level and to recommend an optimum leanness value for a manufacturing organization. In the proposed leanness assessment model, both quantitative and qualitative input factors have been taken into account. Based on program developed in MATLAB and C#, a decision support tool (DST) was developed for decision makers to select lean strategies and evaluate the leanness value based on the proposed models and methodology hence sustain the lean implementation efforts. A case study was conducted to demonstrate the effectiveness of these proposed models and methodology. Case study results suggested that out of 10 wastes identified, the case organization (ABC Limited) is able to improve a maximum of six wastes from the selected workstation within their resource limitations. The selected wastes are: unnecessary motion, setup time, unnecessary transportation, inappropriate processing, work in process and raw material inventory and suggested lean strategies are: 5S, Just-In-Time, Kanban System, the Visual Management System (VMS), Cellular Manufacturing, Standard Work Process using method-time measurement (MTM), and Single Minute Exchange of Die (SMED). From the suggested lean strategies, the impact of 5S was demonstrated by measuring the leanness level of two different situations in ABC. After that, MTM was suggested as a standard work process for further improvement of the current leanness value. The initial status of the organization showed a leanness value of 0.12. By applying 5S, the leanness level significantly improved to reach 0.19 and the simulation of MTM as a standard work method shows the leanness value could be improved to 0.31. The optimum leanness value of ABC was calculated to be 0.64. These leanness values provided a quantitative indication of the impacts of improvement initiatives in terms of the overall leanness level to the case organization. Sensitivity analsysis and a t-test were also performed to validate the model proposed. This research advances the current knowledge base by developing mathematical models and methodologies to overcome lean strategy selection and leanness assessment problems. By selecting appropriate lean strategies, a manufacturer can better prioritize implementation efforts and resources to maximize the benefits of implementing lean strategies in their organization. The leanness index is used to evaluate an organization's current (before lean implementation) leanness state against the state after lean implementation and to establish benchmarking (the optimum leanness state). Hence, this research provides a continuous improvement tool for a lean manufacturing organization.
Resumo:
This thesis explored how an Australian, family owned, manufacturing firm responded to a design led innovation approach as conducted by the action researcher. Specifically, it investigated the barriers and opportunities that arose within the firm when trying to affect change to drive innovation. In doing so, key opportunities were identified that could help the firm to integrate a design led approach and remain competitive within an increasingly accessible global marketplace.
Resumo:
Designers need to consider both the functional and production process requirements at the early stage of product development. A variety of the research works found in the literature has been proposed to assist designers in selecting the most viable manufacturing process chain. However, they do not provide any assistance for designers to evaluate the processes according to the particular circumstances of their company. This paper describes a framework of an Activity and Resource Advisory System (ARAS) that generates advice about the required activities and the possible resources for various manufacturing process chains. The system provides more insight, more flexibility, and a more holistic and suitable approach for designers to evaluate and then select the most viable manufacturing process chain at the early stage of product development.
Resumo:
This paper seeks to explain the lagging productivity in Singapore’s manufacturing noted in the statements of the Economic Strategies Committee Report 2010. Two methods are employed: the Malmquist productivity to measure total factor productivity (TFP) change and Simar and Wilson’s (2007) bootstrapped truncated regression approach which first derives bias-corrected efficiency estimates before being regressed against explanatory variables to help quantify sources of inefficiencies. The findings reveal that growth in total factor productivity was attributed to efficiency change with no technical progress. Sources of efficiency were attributed to quality of worker and flexible work arrangements while the use of foreign workers lowered efficiency.
Resumo:
Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.
Resumo:
Lean strategies have been developed to eliminate or reduce waste and thus improve operational efficiency in a manufacturing environment. However, in practice, manufacturers encounter difficulties to select appropriate lean strategies within their resource constraints and to quantitatively evaluate the perceived value of manufacturing waste reduction. This paper presents a methodology developed to quantitatively evaluate the contribution of lean strategies selected to reduce manufacturing wastes within the manufacturers’ resource (time) constraints. A mathematical model has been developed for evaluating the perceived value of lean strategies to manufacturing waste reduction and a step-by-step methodology is provided for selecting appropriate lean strategies to improve the manufacturing performance within their resource constraints. A computer program is developed in MATLAB for finding the optimum solution. With the help of a case study, the proposed methodology and developed model has been validated. A ‘lean strategy-wastes’ correlation matrix has been proposed to establish the relationship between the manufacturing wastes and lean strategies. Using the correlation matrix and applying the proposed methodology and developed mathematical model, authors came out with optimised perceived value of reduction of a manufacturer's wastes by implementing appropriate lean strategies within a manufacturer's resources constraints. Results also demonstrate that the perceived value of reduction of manufacturing wastes can significantly be changed based on policies and product strategy taken by a manufacturer. The proposed methodology can also be used in dynamic situations by changing the input in the programme developed in MATLAB. By identifying appropriate lean strategies for specific manufacturing wastes, a manufacturer can better prioritise implementation efforts and resources to maximise the success of implementing lean strategies in their organisation.
Resumo:
Roofing tile manufacturing is a mass production process with high operational and inventory wastes and costs. Due to huge operational costs, excessive inventory and wastes, and quality problems, roofing tile manufacturers are trying to implement lean manufacturing practice in their operations in order to remain competitive in an ncreasingly competitive global market. The aim of this research is to evaluate the possibility of reducing the operational and inventory costs of the tile manufacturing process through waste minimization. This paper analyses the current waste situation in a tile manufacturing process and develops current and future value stream mapping for such a process with a view to implementing lean principles in manufacturing. The focus of the approach is on cost reduction by eliminating non-value-added activities.
Resumo:
Purpose – The purpose of this paper is to develop an effective methodology for implementing lean manufacturing strategies and a leanness evaluation metric using continuous performance measurement (CPM). Design/methodology/approach – Based on five lean principles, a systematic lean implementation methodology for manufacturing organizations has been proposed. A simplified leanness evaluation metric consisting of both efficiency and effectiveness attributes of manufacturing performance has been developed for continuous evaluation of lean implementation. A case study to validate the proposed methodology has been conducted and proposed CPM metric has been used to assess the manufacturing leanness. Findings – Proposed methodology is able to systematically identify manufacturing wastes, select appropriate lean tools, identify relevant performance indicators, achieve significant performance improvement and establish lean culture in the organization. Continuous performance measurement matrices in terms of efficiency and effectiveness are proved to be appropriate methods for continuous evaluation of lean performance. Research limitations/implications – Effectiveness of the method developed has been demonstrated by applying it in a real life assembly process. However, more tests/applications will be necessary to generalize the findings. Practical implications – Results show that applying the methods developed, managers can successfully identify and remove manufacturing wastes from their production processes. By improving process efficiency, they can optimize their resource allocations. Manufacturers now have a validated step by step methodology for successfully implementing lean strategies. Originality/value – According to the authors’ best knowledge, this is the first known study that proposed a systematic lean implementation methodology based on lean principles and continuous improvement techniques. Evaluation of performance improvement by lean strategies is a critical issue. This study develops a simplified leanness evaluation metric considering both efficiency and effectiveness attributes and integrates it with the lean implementation methodology.
Resumo:
There is increasing evidence of a weakened platform of consumer trust in mass produced food products. The resistance shown by consumers to the agro-industrial paradigm is evident in an emergent phase of reflexive consumerism, public reactions to an overly-concentrated retail sector and the rise of alternative food networks such as farmers' markets and organic box schemes. Supermarkets are responding strategically by aiming to manufacture new trust relations with consumers. This paper identifies three key strategies of trust manufacturing: (i) reputational enhancement though the institution of “behind the scenes,” business-to-business private standards; (ii) direct quality claims via private standard certification badges on food products, and ; (iii) discursive claimsmaking through symbolic representations of “authenticity” and “tradition.” Drawing upon the food governance literature and a “visual sociology” of supermarkets and supermarket produce, we highlight how trust is both commoditized and increasingly embedded into the marketing of mass-produced foods.
Resumo:
According to 2011 Australian Census figures, embedded creative employees (creative employees not working in the core Creative Industries) make up 2 per cent (or a total of 17 635) of manufacturing industry employees. The average for all industries is 1.6 per cent. In the 2011–2012 financial year the manufacturing industry formed 7.3 per cent of Australia’s gross domestic product (GDP), contributing approximately AU$106.5 billion to the economy (Department of Industry, Innovation, Science, Research and Tertiary Education 2013). Manufacturing is central to innovation, accounting for over one-quarter of all business expenditure in R&D in 2010–2011, representing around AU$4.8 billion invested in R&D (ibid.). Facing challenges such as sustainability concerns, ever-increasing offshore production and the global financial crisis, the Australian manufacturing industry needs to remain relevant and competitive to succeed. Innovation is one way to do this. Given the contribution of the manufacturing industry to the Australian economy, and the above-average portion of embedded creatives in manufacturing, it is important to consider what exactly embedded creatives add to the industry. This chapter, inspired by the Getting Creative in Healthcare report (Pagan, Higgs and Cunningham 2008), examines the contribution of embedded creatives to innovation in the manufacturing industry via case studies and supplemental data.
Resumo:
The purpose of this study is to discover the significant factors causing the bubble defect on the outsoles manufactured by the Case Company. The bubble defect occurs approximately 1.5 per cent of the time or in 36 pairs per day. To understand this problem, experimental studies are undertaken to identify various factors such as injector temperature, mould temperature; that affects the production of waste. The work presented in this paper comprises a review of the relevant literature on the Six Sigma DMAIC improvement process, quality control tools, and the design of the experiments. After the experimentation following the Six Sigma process, the results showed that the defect occurred in approximately 0.5 per cent of the products or in 12 pairs per day; this decreased the production cost from 6,120 AUD per month to 2,040 AUD per month. This research aimed to reduce the amount of waste in men’s flat outsoles. Hence, the outcome of research presented in this paper should be used as a guide for applying the appropriate process for each type of outsole.
Resumo:
Corporate social responsibility is imperative for manufacturing companies to achieve sustainable development. Under a strong environmental information disclosure system, polluting companies are disadvantaged in terms of market competitiveness, because they lack an environmentally friendly image. The objective of this study is to analyze productive inefficiency change in relation to toxic chemical substance emissions for the United States and Japan and their corresponding policies. We apply the weighted Russell directional distance model to measure companies productive inefficiency, which represents their production technology. The data encompass 330 US manufacturing firms observed from 1999 to 2007, and 466 Japanese manufacturing firms observed from 2001 to 2008. The article focuses on nine high-pollution industries (rubber and plastics; chemicals and allied products; paper and pulp; steel and non-ferrous metal; fabricated metal; industrial machinery; electrical products; transportation equipment; precision instruments) categorized into two industry groups: basic materials industries and processing and assembly industries. The results show that productive inefficiency decreased in all industrial sectors in the United States and Japan from 2001 to 2007. In particular, that of the electrical products industry decreased rapidly after 2002 for both countries, possibly because of the enforcement of strict environmental regulations for electrical products exported to European markets.