973 resultados para 5-Amino-8-hydroxy-1,4-naphthoquinone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New derivatives of 1,4-dideoxy-1,4-imino-D-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-D-ribitol (13, IC(50) ∼2 μM) and its C(18)-analogues (IC(50) <10 μM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC(50) ∼8 μM) growth of JURKAT cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report the synthesis of biologically active compounds through a [3+4] cycloaddition reaction to produce the main frame structure, followed by several conventional transformations. The 1,2alpha,4alpha,5-tetramethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (11) obtained from a [3+4] cycloaddition reaction was converted into 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3-one (13) in 46% yield. This was further converted into the alcohols 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (14), 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3beta-ol (15), 1,2alpha,4alpha,5-tetramethyl-3-butyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (17), 1,2alpha,4alpha,5-tetramethyl-3-hexyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (18) and 1,2alpha,4alpha,5-tetramethyl-3-decyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (19). Dehydration of 17, 18 and 19 with thionyl chloride in pyridine resulted in the alkenes 20, 21 and 22 in ca. 82% - 89% yields from starting alcohols. The herbicidal activity of the compounds synthesized was evaluated at a concentration of 100 µg g-1. The most active compound was 21 causing 42,7% inhibition against Cucumis sativus L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis of amino(2-hydroxy-2-(4-methoxyphenyl)ethylamino)methaniminium (14) as a direct precursor of a tubastrine derivative (3-dehydroxy-4-methoxytubastrine). The synthetic steps involved functional group interconversions starting from 1-(4-methoxyphenyl)ethanone to obtain the guanidine-protected derivative 13. Tentative dehydration of 13 with SiOH-adsorbed CuSO4 resulted in guanidine deprotection only. This was an unexpected result, since there are no reports of CuSO4.SiOH as Boc-deprotecting of guanidines. The product 14 was obtained in five steps and 5.4 % overall yield, and constitutes a direct precursor of 3-dehydroxy-4-methoxytubastrine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of enantiomerically pure threo-beta-amino-alpha-hydroxy acids via 1,3-dipolar cycloadditions of imine dipolarophiles with the chiral isomunchnone derived from (5R)-5-phenylmorpholin-3-one 1 is described. The cycloadducts were obtained with excellent diastereofacial- and exo-selectivity. Subsequent hydrolysis and chemoselective exocyclic amide cleavage afforded the threo-beta-amino-alpha-hydroxy acids with recovery of the initial chiral auxiliary. (C) 2009 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 1H NMR study of monosubstituted η-cyclopentadienyl-rhodium(I) complexes of type LLRh(C5H4X) and -iridium(I) complexes of type L2Ir(C5H4X) (L = ethene, LL = 1,3- or 1,5-diolefin; X = C(C6H5)3, CHO, or COOCH3) has been carried out. For complexes of both metals in which the neutral ligand is ethene or a non-conjugated diolefin the NMR spectra of the cyclopentadienyl protons are unusual in that H(2), H(5) resonate to high field either at room temperature or below. The corresponding NMR spectra for the cyclopentadienyl ring protons of complexes where the neutral ligand is a conjugated diene are, with one exception, normal. A single crystal X-ray structural analysis of (η4-2,4-dimethylpenta-1,4-diene)(η5-formylcyclopentadienyl)rhodium(I) (which exhibits an abnormal 1H NMR spectrum) reveals substantial localisation of electron density in the C(3)C(4) Cp ring bond (1.283(33) Å) which may be consistent with a contribution from an ‘allyl-ene’ rotamer to the ring—metal bonding scheme. An extended Hückel calculation with self consistent charge iteration was performed on this complex. The results predict a greater Mulliken overlap population for the C(3)C(4) bond in the cyclopentadienyl ring and show that the localisation is dependent on both the Cp ring substituent and the nature of the diolefin. The mass spectral fragmentation patterns of some representative diene complexes of iridium(I) and rhodium(I) are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drugs that alter brain serotonin (5-HT) function can modulate the behavioral effects of cocaine, but the underlying receptor mechanisms are poorly understood. The present study examined the effects of the selective 5-HT1A receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.01-0.1 mg/kg, i.v.) on cocaine self-administration in the context of a choice procedure. Five adult male cynomolgus monkeys self-administered cocaine (saline, 0.003-0.03 mg/kg per injection) under a concurrent fixed-ratio 50 schedule of food (1-g banana-flavored pellets) and cocaine presentation. Allocation of responses to the cocaine-associated lever (cocaine choice) increased in a dose-related manner from < or =20% of total responses when saline or 0.003 mg/kg per injection cocaine was the alternative to food to > or =75% when 0.03 mg/kg per injection cocaine was available. In four of five monkeys, when choice was between a low cocaine dose and food, 0.01 mg/kg 8-OH-DPAT increased injection-lever responding. At cocaine doses which occasioned > or =75% cocaine choice, 8-OH-DPAT did not alter response allocation. In the fifth monkey, 8-OH-DPAT only decreased injection-lever responding. When choice was between saline and food, 8-OH-DPAT did not reliably shift responding to the injection lever, except at doses that disrupted operant performance. These results suggest that a 5-HT1A receptor agonist can increase the reinforcing strength of a low cocaine dose relative to a concurrently available non-drug reinforcer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA breakage effect of the anticancer agent 3,6-diaziridinyl-2,5-bis(carboethoxyamino)-1,4-benzoquinone (AZQ, NSC-182986) on bacteriophage PM2 DNA was investigated using agarose gel electrophoresis. AZQ caused both single-stranded and double-stranded breaks after reduction with NaBH(,4), but it was not active in the native state. At 120 (mu)M, it degraded 50% of the closed circular form I DNA into 40% form II DNA (single-stranded break) and 10% form III DNA (double-stranded break). It produced a dose-response breakage between 1 (mu)M and 320 (mu)M. The DNA breakage exhibited a marked pH dependency. At 320 (mu)M, AZQ degraded 80% and 60% of form I DNA at pH 4 and 10 respectively, but none between pH 6 to 8. The DNA breakage at physiologic pH was greatly enhanced when 10 (mu)M cupric sulfate was included in the incubation mixture. The DNA strand scission was inhibited by catalase, glutathione, KI, histidine, Tiron, and DABCO. These results suggest that the DNA breakage may be caused by active oxygen metabolites including hydroxyl free radical. The bifunctional cross-linking activity of reduced AZQ on isolated calf thymus DNA was investigated by ethidium fluorescence assay. The cross-linking activity exhibited a similar pH dependency; highest in acidic and alkaline pH, inactive under neutral conditions. Using the alkaline elution method, we found that AZQ induced DNA single-stranded breaks in Chinese hamster ovary cells treated with 50 (mu)M of AZQ for 2 hr. The single-stranded break frequencies in rad equivalents were 17 with 50 (mu)M and 140 with 100 (mu)M of AZQ. In comparison, DNA cross-links appeared in cells treated with only 1 to 25 (mu)M of AZQ for 2 hr. The cross-linking frequencies in rad equivalents were 39 and 90 for 1 and 5 (mu)M of AZQ, respectively. Both DNA-DNA and DNa-protein cross-links were induced by AZQ in CHO cells as revealed by the proteinas K digestion assay. DNA cross-links increased within the first 4 hr of incubation in drug-free medium and slightly decreased by 12 hr, and most of the cross-links disappeared after cells were allowed to recovered for 24 hr.^ By electrochemical analysis, we found that AZQ was more readily reduced at acidic pH. However, incubation of AZQ with NaBH(,4) at pH 7.8 or 10, but not at 4, produced superoxide anion. The opening of the aziridinyl rings of AZQ at pH 4 was faster in the presence of NaBH(,4) than in its absence; no ring-opening was detected at pH 7.8 regardless of the inclusion of NaBH(,4). . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian anx7 gene codes for a Ca2+-activated GTPase, which supports Ca2+/GTP-dependent secretion events and Ca2+ channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca2+ signaling in secreting pancreatic β cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the β cells. The nullizygous anx7 (−/−) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/−) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/−) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca2+ channel functions are normal. However, electrooptical recordings indicate that the (+/−) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP3)-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP3 receptor expression and function in pancreatic islets. The profound increase in islets, β cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic β cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca2+ signaling through IP3-sensitive Ca2+ stores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inositol 1,4,5-tris-phosphate (IP3) binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca2+ release from the ER lumen to the cytoplasm, generating complex cytoplasmic Ca2+ concentration signals including temporal oscillations and propagating waves. IP3-mediated Ca2+ release is also controlled by cytoplasmic Ca2+ concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated Xenopus oocyte nuclei to determine the dependencies of IP3R on cytoplasmic Ca2+ and IP3 concentrations under rigorously defined conditions. Instead of the expected narrow bell-shaped cytoplasmic free Ca2+ concentration ([Ca2+]i) response centered at ≈300 nM–1 μM, the open probability remained elevated (≈0.8) in the presence of saturating levels (10 μM) of IP3, even as [Ca2+]i was raised to high concentrations, displaying two distinct types of functional Ca2+ binding sites: activating sites with half-maximal activating [Ca2+]i (Kact) of 210 nM and Hill coefficient (Hact) ≈2; and inhibitory sites with half-maximal inhibitory [Ca2+]i (Kinh) of 54 μM and Hill coefficient (Hinh) ≈4. Lowering IP3 concentration was without effect on Ca2+ activation parameters or Hinh, but decreased Kinh with a functional half-maximal activating IP3 concentration (KIP3) of 50 nM and Hill coefficient (HIP3) of 4 for IP3. These results demonstrate that Ca2+ is a true receptor agonist, whereas the sole function of IP3 is to relieve Ca2+ inhibition of IP3R. Allosteric tuning of Ca2+ inhibition by IP3 enables the individual IP3R Ca2+ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2+ concentration signaling and quantal Ca2+ release.