815 resultados para 390301 Justice Systems and Administration
Resumo:
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Resumo:
The impact of global positioning systems (GPS) and plotter systems on the relative fishing power of the northern prawn fishery fleet on tiger prawns (Penaeus esculentus Haswell, 1879, and P. semisulcatus de Haan, 1850) was investigated from commercial catch data. A generalized linear model was used to account for differences in fishing power between boats and changes in prawn abundance. It was found that boats that used a GPS alone had 4% greater fishing power than boats without a CPS. The addition of a plotter raised the power by 7% over boats without the equipment. For each year between the first to third that a fisher has been working with plotters, there is an additional 2 or 3% increase. It appears that when all boats have a GPS and plotter for at least 3 years, the fishing power of the fleet will increase by 12%. Management controls have reduced the efficiency of each boat and lowered the number of days available to fish, but this may not have been sufficient to counteract the increases. Further limits will be needed to maintain the desired levels of mortality.
Resumo:
Phase diagrams for the systems Ln2O3---H2O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and Y) studied at 5000 to 10,000 psi and temperature range of 200–900°C, show that Ln(OH)3 hexagonal and LnOOH monoclinic are the only stable phases from Nd to Ho. The cubic oxide phase (C---Ln2O3) is stable for systems of Er, Tm, Yb and Lu, with no evidence of its equilibrium in the systems of lighter lanthanides. Using strong acids, HNO3 and HCOOH, as mineralisers the cubic oxides could be stabilised from Eu down to Lu. Solid solution phases of CeO2---Y2O3 and Eu2O3---Y2O3 have also been synthesised with HNO3 as mineraliser, since these compounds have promising use as solid electrolyte and phosphor materials respectively.
Resumo:
Phase diagrams for ternary Ln2O3-H2O-CO2 systems for the entire lanthanide series (except promethium) were studied at temperatures in the range 100–950 °C and pressures up to 3000 bar. The phase diagrams obtained for the heavier lanthanides are far more complex, with the appearance of a number of stable carbonate phases. New carbonates isolated from lanthanide systems (Ln ≡ Tm, Yb, Lu) include Ln6(OH)4(CO3)7, Ln4(OH)6-(CO3)3, Ln2O(OH)2CO3, Ln6O2(OH)8(CO3)3 and Ln12O7(OH)10(CO3)6. Stable carbonate phases common to all the lighter lanthanides are hexagonal LnOHCO3 and hexagonal Ln2O2CO3. Ln2(CO3)3• 3H2O is stable from samarium onwards and orthorhombic LnOHCO3 is stable from gadolinium onwards. On the basis of the appearance of stable carbonates, four different groups of lanthanides were established: lanthanum to neodymium, promethium to europium, terbium to erbium and thulium to lutetium. Gadolinium is the connecting element between groups II and III. This is in accordance with the tetrad classification for f transition elements.
Resumo:
Anisotropic Gaussian Schell-model (AGSM) fields and their transformation by first-order optical systems (FOS’s) forming Sp(4,R) are studied using the generalized pencils of rays. The fact that Sp(4,R), rather than the larger group SL(4,R), is the relevant group is emphasized. A convenient geometrical picture wherein AGSM fields and FOS’s are represented, respectively, by antisymmetric second-rank tensors and de Sitter transformations in a (3+2)-dimensional space is developed. These fields are shown to separate into two qualitatively different families of orbits and the invariants over each orbit, two in number, are worked out. We also develop another geometrical picture in a (2+1)-dimensional Minkowski space suitable for the description of the action of axially symmetric FOS’s on AGSM fields, and the invariants, now seven in number, are derived. Interesting limiting cases forming coherent and quasihomogeneous fields are analyzed.
Resumo:
With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.
Resumo:
By applying the theory of the asymptotic distribution of extremes and a certain stability criterion to the question of the domain of convergence in the probability sense, of the renormalized perturbation expansion (RPE) for the site self-energy in a cellularly disordered system, an expression has been obtained in closed form for the probability of nonconvergence of the RPE on the real-energy axis. Hence, the intrinsic mobility mu (E) as a function of the carrier energy E is deduced to be given by mu (E)= mu 0exp(-exp( mod E mod -Ec) Delta ), where Ec is a nominal 'mobility edge' and Delta is the width of the random site-energy distribution. Thus mobility falls off sharply but continuously for mod E mod >Ec, in contradistinction with the notion of an abrupt 'mobility edge' proposed by Cohen et al. and Mott. Also, the calculated electrical conductivity shows a temperature dependence in qualitative agreement with experiments on disordered semiconductors.
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.
Resumo:
Scaling relations between the critical indices are derived for two similar systems exhibiting λ lines: binary liquid systems and ferromagnets under pressure. In addition to the usual scaling relations, this procedure gives information about other weakly divergent quantities like isothermal compressibility and thermal expansion. Suggestions for more detailed investigations are made.
Resumo:
A new arrangement to achieve adequate mixing between gas and solid is described. Residence time distribution studies ensured that the behavior of this device actually approaches that of a completely mixed system. The applicability of this device in MT reactors was verified by studying the vapor phase catalytic oxidation of anthracene over vanadium pentoxide.
Resumo:
This paper presents two simple simulation and modelling tools designed to aid in the safety assessment required for unmanned aircraft operations within unsegregated airspace. First, a fast pair-wise encounter generator is derived to simulate the See and Avoid environment. The utility of the encounter generator is demonstrated through the development of a hybrid database and a statistical performance evaluation of an autonomous See and Avoid decision and control strategy. Second, an unmanned aircraft mission generator is derived to help visualise the impact of multiple persistent unmanned operations on existing air traffic. The utility of the mission generator is demonstrated through an example analysis of a mixed airspace environment using real traffic data in Australia. These simulation and modelling approaches constitute a useful and extensible set of analysis tools, that can be leveraged to help explore some of the more fundamental and challenging problems facing civilian unmanned aircraft system integration.
Resumo:
Novel one and two dimensional NMR techniques are proposed and utilized for the determination of the signs of the order parameters used for the study of the mobility of the fatty acid chains. The experiments designed to extract this information involve the use of the intensities of the side bands in the spectra of oriented systems spinning at the magic angle. Advantages of the two dimensional technique over the one dimensional method are discussed. The utility of the method in the study of the dynamic properties of membranes and model systems is pointed out.
Resumo:
The article presents a generalized analytical expression for description of the integral excess Gibbs free energy of mixing of a ternary system. Twelve constants of the equation are assessed by the least mean squares regressional analysis of the experimental integral excess data of the constituent binaries; three ternary parameters are evaluated by a regressional analysis based on the partial experimental data of a component of the ternary system. The assessed values of the ternary parameters describe the nature of the ternary interaction in the system. Activities and isoactivities of the components in the Ag-Au-Cu system at 1350 K are calculated and found to be in good agreement with the experimental data. This analytical treatment is particularly useful to ternary systems where the thermodynamic data are available from different sources.
Resumo:
In this paper, we describe a system of particles that perform independent random motions in space and at the end of their lifetimes give birth to a random number of offspring. We show that the system in the large density, small mass, rapid branching or long time scale limit converges to a measure-valued diffusion called the superprocess.