890 resultados para 3-dimensional effect


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of this follow-up study was to evaluate the clinical usefulness of a new type of 3-dimensional (3D) miniplate for open reduction and monocortical fixation of mandibular angle fractures. PATIENTS AND METHODS: In 20 consecutive patients, noncomminuted mandibular angle fractures were treated with open reduction and fixation using a 2 mm 3D miniplate system in a transoral approach. All patients were systematically monitored until 6 months postoperatively. Among the outcome parameters recorded were infection, hardware failure, wound dehiscence, and sensory disturbance of the inferior alveolar nerve. RESULTS: The mean operation time from incision to wound closure was 65 minutes. Two patients had a mucosal wound dehiscence with no consequences. None developed an infection requiring a plate removal. All but 2 patients had normal sensory function 3 months after surgery. Plate fracture occurred in one patient in whom a preceding surgical removal of the third molar had been the reason for the mandibular fracture. In the absence of clinical symptoms, the patient declined plate removal. On final follow-up, fracture healing was considered clinically complete in all patients. CONCLUSIONS: The 3D plating system described here is suitable for fixation of simple mandibular angle fractures and is an easy-to-use alternative to conventional miniplates. The system may be contraindicated in patients in whom insufficient interfragmentary bone contact causes minor stability of the fracture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: In alveolar distraction, in cases of severe atrophy in particular, it is often difficult to perform osteotomies in order to make a transport segment in optimal size and shape. Moreover care must be taken, not to damage the closely locating anato- mical structures such as the maxillary sinus, the inferior alveolar nerve, and the roots of the neighboring teeth. For setting ideal osteotomy lines exactly, we have developed a CT-based preoperative planning tool. Methods: 3-dimensional visual reconstruction of the jaw is created from the preoperative CT scans (1.0-mm slice thick- ness). Using the image-processing software Mimics (Materialise, Yokohama, Japan), various procedures of virtual cutting are simulated first to determine optimal osteotomy lines and to design an ideal transport segment. After the computer planning, data from the virtual solid model are transferred to a rapid prototype model, and a guiding splint is made to transfer the planned surgical simulation to the actual surgery. Results: The method was used in a case of severe atrophy of the anterior maxilla. The patient had a large maxillary sinus requir- ing a precise osteotomy in this critical area. Using the splint allowing a 3-dimensional guidance, alveolar osteotomies were easily done to achieve a transport segment in sufficient dimen- sion as planned, and any perforation of the maxillary sinus could be avoided. Finally the alveolar distraction of 10mm has suc- cessfully been performed. Conclusion: The preoperative planning method and the guiding splint described here are useful in problematic cases requiring an extremely precise osteotomy due to lack of bony space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this study was to delineate the anatomy of the precentral cerebellar vein, superior vermian vein, and internal occipital vein using reconstructions of computed tomographic and magnetic resonance imaging scans with navigation software. These data were compared with previous anatomic and angiographic findings to show the resolution and accuracy of the system. METHODS: We retrospectively reviewed 100 patients with intracranial pathologies (50 computed tomographic scans with contrast and 50 magnetic resonance imaging scans with gadolinium) using a neuronavigation workstation for 3-dimensional reconstruction. Particular attention was paid to depiction of the precentral cerebellar vein, superior vermian vein, and internal occipital vein. The data were reviewed and analyzed. RESULTS: The precentral cerebellar vein, superior vermian vein, and its tributary, the supraculminate vein, were depicted in 52 (52%) patients. The internal occipital vein was delineated on 99 (49.5%) sides and joined the basal vein and vein of Galen in 39 (39.4%) and 60 (60.6%) hemispheres, respectively. Comparing these results with previous angiographic studies, the ability of the neuronavigation system for depicting these vessels is similar to that of digital subtraction angiography. CONCLUSION: This study illustrates the possibility of depicting the small vessels draining into the pineal region venous complex using 3-dimensional neuronavigation with an accuracy comparable to that of digital subtraction angiography. This tool provides important information for both surgical planning and intraoperative orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES This study prospectively evaluated the role of a novel 3-dimensional, noninvasive, beat-by-beat mapping system, Electrocardiographic Mapping (ECM), in facilitating the diagnosis of atrial tachycardias (AT). BACKGROUND Conventional 12-lead electrocardiogram, a widely used noninvasive tool in clinical arrhythmia practice, has diagnostic limitations. METHODS Various AT (de novo and post-atrial fibrillation ablation) were mapped using ECM followed by standard-of-care electrophysiological mapping and ablation in 52 patients. The ECM consisted of recording body surface electrograms from a 252-electrode-vest placed on the torso combined with computed tomography-scan-based biatrial anatomy (CardioInsight Inc., Cleveland, Ohio). We evaluated the feasibility of this system in defining the mechanism of AT-macro-re-entrant (perimitral, cavotricuspid isthmus-dependent, and roof-dependent circuits) versus centrifugal (focal-source) activation-and the location of arrhythmia in centrifugal AT. The accuracy of the noninvasive diagnosis and detection of ablation targets was evaluated vis-à-vis subsequent invasive mapping and successful ablation. RESULTS Comparison between ECM and electrophysiological diagnosis could be accomplished in 48 patients (48 AT) but was not possible in 4 patients where the AT mechanism changed to another AT (n = 1), atrial fibrillation (n = 1), or sinus rhythm (n = 2) during the electrophysiological procedure. ECM correctly diagnosed AT mechanisms in 44 of 48 (92%) AT: macro-re-entry in 23 of 27; and focal-onset with centrifugal activation in 21 of 21. The region of interest for focal AT perfectly matched in 21 of 21 (100%) AT. The 2:1 ventricular conduction and low-amplitude P waves challenged the diagnosis of 4 of 27 macro-re-entrant (perimitral) AT that can be overcome by injecting atrioventricular node blockers and signal averaging, respectively. CONCLUSIONS This prospective multicenter series shows a high success rate of ECM in accurately diagnosing the mechanism of AT and the location of focal arrhythmia. Intraprocedural use of the system and its application to atrial fibrillation mapping is under way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION The aim of this study was to evaluate the concordance of 2- and 3-dimensional radiography and histopathology in the diagnosis of periapical lesions. METHODS Patients were consecutively enrolled in this study provided that preoperative periapical radiography (PR) and cone-beam computed tomographic imaging of the tooth to be treated with apical surgery were performed. The periapical lesional tissue was histologically analyzed by 2 blinded examiners. The final histologic diagnosis was compared with the radiographic assessments of 4 blinded observers. The initial study material included 62 teeth in the same number of patients. RESULTS Four lesions had to be excluded during processing, resulting in a final number of 58 evaluated cases (31 women and 27 men, mean age = 55 years). The final histologic diagnosis of the periapical lesions included 55 granulomas (94.8%) and 3 cysts (5.2%). Histologic analysis of the tissue samples from the apical lesions exhibited an almost perfect agreement between the 2 experienced investigators with an overall agreement of 94.83% (kappa = 0.8011). Radiographic assessment overestimated cysts by 28.4% (cone-beam computed tomographic imaging) and 20.7% (periapical radiography), respectively. Comparing the correlation of the radiographic diagnosis of 4 observers with the final histologic diagnosis, 2-dimensional (kappa = 0.104) and 3-dimensional imaging (kappa = 0.111) provided only minimum agreement. CONCLUSIONS To establish a final diagnosis of an apical radiolucency, the tissue specimen should be evaluated histologically and specified as a granuloma (with/without epithelium) or a cyst. Analysis of 2-dimensional and 3-dimensional radiographic images alike results only in a tentative diagnosis that should be confirmed with biopsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimensional alterations of the facial soft and bone tissues following tooth extraction in the esthetic zone play an essential role to achieve successful outcomes in implant therapy. This prospective study is the first to investigate the interplay between the soft tissue dimensions and the underlying bone anatomy during an 8-wk healing period. The analysis is based on sequential 3-dimensional digital surface model superimpositions of the soft and bone tissues using digital impressions and cone beam computed tomography during an 8-wk healing period. Soft tissue thickness in thin and thick bone phenotypes at extraction was similar, averaging 0.7 mm and 0.8 mm, respectively. Interestingly, thin bone phenotypes revealed a 7-fold increase in soft tissue thickness after an 8-wk healing period, whereas in thick bone phenotypes, the soft tissue dimensions remained unchanged. The observed spontaneous soft tissue thickening in thin bone phenotypes resulted in a vertical soft tissue loss of only 1.6 mm, which concealed the underlying vertical bone resorption of 7.5 mm. Because of spontaneous soft tissue thickening, no significant differences were detected in the total tissue loss between thin and thick bone phenotypes at 2, 4, 6, and 8 wk. More than 51% of these dimensional alterations occurred within 2 wk of healing. Even though the observed spontaneous soft tissue thickening in thin bone phenotypes following tooth extraction conceals the pronounced underlying bone resorption pattern by masking the true bone deficiency, spontaneous soft tissue thickening offers advantages for subsequent bone regeneration and implant therapies in sites with high esthetic demand (Clinicaltrials.gov NCT02403700).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. METHODS Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. RESULTS There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D<0.17 mm), as expected, followed by AC and BZ superimpositions that presented similar level of accuracy (D<0.5 mm). 3P and 1Z were the least accurate superimpositions (0.790.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. CONCLUSIONS Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submitted in partial fulfillment of the requirements for a Certificate in Orthodontics, Dept. of Orthodontics, University of Connecticut Health Center, 1992

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Como en todos los medios de transporte, la seguridad en los viajes en avión es de primordial importancia. Con los aumentos de tráfico aéreo previstos en Europa para la próxima década, es evidente que el riesgo de accidentes necesita ser evaluado y monitorizado cuidadosamente de forma continúa. La Tesis presente tiene como objetivo el desarrollo de un modelo de riesgo de colisión exhaustivo como método para evaluar el nivel de seguridad en ruta del espacio aéreo europeo, considerando todos los factores de influencia. La mayor limitación en el desarrollo de metodologías y herramientas de monitorización adecuadas para evaluar el nivel de seguridad en espacios de ruta europeos, donde los controladores aéreos monitorizan el tráfico aéreo mediante la vigilancia radar y proporcionan instrucciones tácticas a las aeronaves, reside en la estimación del riesgo operacional. Hoy en día, la estimación del riesgo operacional está basada normalmente en reportes de incidentes proporcionados por el proveedor de servicios de navegación aérea (ANSP). Esta Tesis propone un nuevo e innovador enfoque para evaluar el nivel de seguridad basado exclusivamente en el procesamiento y análisis trazas radar. La metodología propuesta ha sido diseñada para complementar la información recogida en las bases de datos de accidentes e incidentes, mediante la provisión de información robusta de los factores de tráfico aéreo y métricas de seguridad inferidas del análisis automático en profundidad de todos los eventos de proximidad. La metodología 3-D CRM se ha implementado en un prototipo desarrollado en MATLAB © para analizar automáticamente las trazas radar y planes de vuelo registrados por los Sistemas de Procesamiento de Datos Radar (RDP) e identificar y analizar todos los eventos de proximidad (conflictos, conflictos potenciales y colisiones potenciales) en un periodo de tiempo y volumen del espacio aéreo. Actualmente, el prototipo 3-D CRM está siendo adaptado e integrado en la herramienta de monitorización de prestaciones de Aena (PERSEO) para complementar las bases de accidentes e incidentes ATM y mejorar la monitorización y proporcionar evidencias de los niveles de seguridad. ABSTRACT As with all forms of transport, the safety of air travel is of paramount importance. With the projected increases in European air traffic in the next decade and beyond, it is clear that the risk of accidents needs to be assessed and carefully monitored on a continuing basis. The present thesis is aimed at the development of a comprehensive collision risk model as a method of assessing the European en-route risk, due to all causes and across all dimensions within the airspace. The major constraint in developing appropriate monitoring methodologies and tools to assess the level of safety in en-route airspaces where controllers monitor air traffic by means of radar surveillance and provide aircraft with tactical instructions lies in the estimation of the operational risk. The operational risk estimate normally relies on incident reports provided by the air navigation service providers (ANSPs). This thesis proposes a new and innovative approach to assessing aircraft safety level based exclusively upon the process and analysis of radar tracks. The proposed methodology has been designed to complement the information collected in the accident and incident databases, thereby providing robust information on air traffic factors and safety metrics inferred from the in depth assessment of proximate events. The 3-D CRM methodology is implemented in a prototype tool in MATLAB © in order to automatically analyze recorded aircraft tracks and flight plan data from the Radar Data Processing systems (RDP) and identify and analyze all proximate events (conflicts, potential conflicts and potential collisions) within a time span and a given volume of airspace. Currently, the 3D-CRM prototype is been adapted and integrated in AENA’S Performance Monitoring Tool (PERSEO) to complement the information provided by the ATM accident and incident databases and to enhance monitoring and providing evidence of levels of safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several groups all over the world are researching in several ways to render 3D sounds. One way to achieve this is to use Head Related Transfer Functions (HRTFs). These measurements contain the Frequency Response of the human head and torso for each angle. Some years ago, was only possible to measure these Frequency Responses only in the horizontal plane. Nowadays, several improvements have made possible to measure and use 3D data for this purpose. The problem was that the groups didn't have a standard format file to store the data. That was a problem when a third part wanted to use some different HRTFs for 3D audio rendering. Every of them have different ways to store the data. The Spatially Oriented Format for Acoustics or SOFA was created to provide a solution to this problem. It is a format definition to unify all the previous different ways of storing any kind of acoustics data. At the moment of this project they have defined some basis for the format and some recommendations to store HRTFs. It is actually under development, so several changes could come. The SOFA[1] file format uses a numeric container called netCDF[2], specifically the Enhaced data model described in netCDF 4 that is based on HDF5[3]. The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction providing a variety of rendering algorithms. The SSR was developed at the Quality and Usability Lab at TU Berlin and is now further developed at the Institut für Nachrichtentechnik at Universität Rostock [4]. This project is intended to be an introduction to the use of SOFA files, providing a C++ API to manipulate them and adapt the binaural renderer of the SSR for working with the SOFA format. RESUMEN. El SSR (SoundScape Renderer) es un programa que está siendo desarrollado actualmente por la Universität Rostock, y previamente por la Technische Universität Berlin. El SSR es una herramienta diseñada para la reproducción y renderización de audio 2D en tiempo real. Para ello utiliza diversos algoritmos, algunos orientados a sistemas formados por arrays de altavoces en diferentes configuraciones y otros algoritmos diseñados para cascos. El principal objetivo de este proyecto es dotar al SSR de la capacidad de renderizar sonidos binaurales en 3D. Este proyecto está centrado en el binaural renderer del SSR. Este algoritmo se basa en el uso de HRTFs (Head Related Transfer Function). Las HRTFs representan la función de transferencia del sistema formado por la cabeza y el torso del oyente. Esta función es medida desde diferentes ángulos. Con estos datos el binaural renderer puede generar audio en tiempo real simulando la posición de diferentes fuentes. Para poder incluir una base de datos con HRTFs en 3D se ha hecho uso del nuevo formato SOFA (Spatially Oriented Format for Acoustics). Este nuevo formato se encuentra en una fase bastante temprana de su desarrollo. Está pensado para servir como formato estándar para almacenar HRTFs y cualquier otro tipo de medidas acústicas, ya que actualmente cada laboratorio cuenta con su propio formato de almacenamiento y esto hace bastante difícil usar varias bases de datos diferentes en un mismo proyecto. El formato SOFA hace uso del contenedor numérico netCDF, que a su vez esta basado en un contenedor más básico llamado HRTF-5. Para poder incluir el formato SOFA en el binaural renderer del SSR se ha desarrollado una API en C++ para poder crear y leer archivos SOFA con el fin de utilizar los datos contenidos en ellos dentro del SSR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.