952 resultados para 2D EXSY 13C nuclear magnetic resonance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been used in many applications of magnetic resonance imaging (MRI) and low-resolution NMR (LRNMR) spectroscopy. Recently. CPMG was used in online LRNMR measurements that use long RF pulse trains, causing an increase in probe temperature and, therefore, tuning and matching maladjustments. To minimize this problem, the use of a low-power CPMG sequence based on low refocusing pulse flip angles (LRFA) was studied experimentally and theoretically. This approach has been used in several MRI protocols to reduce incident RF power and meet the specific absorption rate. The results for CPMG with LRFA of 3 pi/4 (CPMG(135)), pi/2 (CPMG(90)) and pi/4 (CPMG(45)) were compared with conventional CPMG with refocusing pi pulses. For a homogeneous field, with linewidth equal to Delta nu = 15 Hz, the refocusing flip angles can be as low as pi/4 to obtain the transverse relaxation time (T(2)) value with errors below 5%. For a less homogeneous magnetic field. Delta nu = 100 Hz, the choice of the LRFA has to take into account the reduction in the intensity of the CPMG signal and the increase in the time constant of the CPMG decay that also becomes dependent on longitudinal relaxation time (T(1)). We have compared the T(2) values measured by conventional CPMG and CPMG(90) for 30 oilseed species, and a good correlation coefficient, r = 0.98, was obtained. Therefore, for oilseeds, the T(2) measurements performed with pi/2 refocusing pulses (CPMG(90)), with the same pulse width of conventional CPMG, use only 25% of the RF power. This reduces the heating problem in the probe and reduces the power deposition in the samples. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive and irreversible degeneration of the muscles. The mdx mouse is the classical animal model for DMD, showing similar molecular and protein defects. The mdx mouse, however, does not show significant muscle weakness, and the diaphragm muscle is significantly more degenerated than skeletal muscles. In this work, magnetic resonance spectroscopy (MRS) was used to study the metabolic profile of quadriceps and diaphragm muscles from mdx and control mice. Using principal components analysis (PCA), the animals were separated into groups according to age and lineages. The classification was compared to histopathological analysis. Among the 24 metabolites identified from the nuclear MR spectra, only 19 were used by the PCA program for classification purposes. These can be important key biomarkers associated with the progression of degeneration in mdx muscles and with natural aging in control mice. Glutamate, glutamine, succinate, isoleucine, acetate, alanine and glycerol were increased in mdx samples as compared to control mice, in contrast to carnosine, taurine, glycine, methionine and creatine that were decreased. These results suggest that MRS associated with pattern recognition analysis can be a reliable tool to assess the degree of pathological and metabolic alterations in the dystrophic tissue, thereby affording the possibility of evaluation of beneficial effects of putative therapies. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparencias en inglés de la asignatura "Resonancia Magnética Nuclear Avanzada" (Advanced Nuclear Magnetic Resonance) (36643) que se imparte en el Máster de Química Médica como asignatura optativa de 3 créditos ECTS. En esta asignatura se completa el estudio iniciado en la asignatura de quinto curso de la licenciatura en Química "Determinación estructural" (7448) y en la del Grado de Química de tercer curso "Determinación estructural de los compuestos orgánicos" (26030) en lo referente a técnicas bidimensionales de resonancia magnética nuclear. Además se proporcionan los conocimientos necesarios para poder interpretar RMN de otros núcleos activos en RMN no estudiados hasta el momento como 19F, 31P, 2H, 28Si y 15N así como sus acoplamientos con los núcleos de 1H y 13C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the potential of magic angle spinning nuclear magnetic resonance (MAS NMR) in the elucidation of post-mortem metabolism in muscle biopsies, simultaneous H-1 and (31)p MAS NMR measurements were made continuously on postmortem (20 min to 24 h) muscle longissimus samples from rabbits. The animals had either been or not been given adrenaline (0.5 mg kg(-1) 4 h pre-slaughter) to deplete stores of muscle glycogen. The intracellular pH was calculated from H-1 spectra, and the post-mortem rate of formation of lactate was followed and quantified. Comparison of measurements made on muscle samples from rabbits treated with adrenaline with measurements made on muscle samples from untreated' rabbits revealed significant effects of adrenaline treatment on both pH (pH24 h = 6.42 vs. pH24 It = 5.60) and formation of lactate (16 mmol g(-1) vs. 65 mmol g(-1)). The P-31 NMR spectra were used to follow the rate of degradation of ATP and phosphocreatine. The present study clearly shows that MAS NMR has potential for the study of post-mortem energy metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemoproteins are a very important class of enzymes in nature sharing the essentially same prosthetic group, heme, and are good models for exploring the relationship between protein structure and function. Three important hemoproteins, chloroperoxidase (CPO), horseradish peroxidase (HRP), and cytochrome P450cam (P450cam), have been extensively studied as archetypes for the relationship between structure and function. In this study, a series of 1D and 2D NMR experiments were successfully conducted to contribute to the structural studies of these hemoproteins. ^ During the epoxidation of allylbenzene, CPO is converted to an inactive green species with the prosthetic heme modified by addition of the alkene plus an oxygen atom forming a five-membered chelate ring. Complete assignment of the NMR resonances of the modified porphyrin extracted and demetallated from green CPO unambiguously established the structure of this porphyrin as an NIII-alkylated product. A novel substrate binding motif of CPO was proposed from this concluded regiospecific N-alkylation structure. ^ Soybean peroxidase (SBP) is considered as a more stable, more abundant and less expensive substitute of HRP for industrial applications. A NMR study of SBP using 1D and 2D NOE methods successfully established the active site structure of SBP and consequently fills in the blank of the SBP NMR study. All of the hyperfine shifts of the SBP-CN- complex are unambiguously assigned together with most of the prosthetic heme and all proximal His170 resonances identified. The active site structure of SBP revealed by this NMR study is in complete agreement with the recombinant SBP crystal structure and is highly similar to that of the HRP with minor differences. ^ The NMR study of paramagnetic P450cam had been greatly restricted for a long time. A combination of 2D NMR methods was used in this study for P450cam-CN - complexes with and without camphor bound. The results lead to the first unequivocal assignments of all heme hyperfine-shifted signals, together with certain correlated diamagnetic resonances. The observed alternation of the assigned novel proximal cysteine β-CH2 resonances induced by camphor binding indicated a conformational change near the proximal side.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY OBJECTIVES: To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. DESIGN: Observational, before and after CPAP treatment. SETTING: Two tertiary hospital research institutes. PARTICIPANTS: 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). MEASUREMENTS AND RESULTS: Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = -0.39, corrected P = 0.033) and between % total sleep time at SpO(2) < 90% and hippocampal Cho/Cr (r = -0.40, corrected P = 0.01). CONCLUSIONS: OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia. CITATION: O'Donoghue FJ; Wellard RM; Rochford PD; Dawson A; Barnes M; Ruehland WR; Jackson ML; Howard ME; Pierce RJ; Jackson GD. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton spin lattice relaxation (T1) in (CH3)4NCdBr3 at different Larmor frequencies (10, 20 and 30 MHz) has been studied in the temperature range 77 to 400 K. The variations in T1 at high temperature are independent of frequency and show a maximum due to spin rotation- interaction. The other features are interpreted as being due to isotropic tumbling of the tetramethylammonium ion and random reorientation of the CH3 group. The CW spectrum remained narrow up to 77 K and develops a wing structure at low temperatures. This observation is attributed to a possible tunnelling motion of the CH3 group, which has rather low activation energy as demonstrated by the study of T1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexation of valinomycin (VM) with the divalent cation Ca2+ in a lipophilic solvent, acetonitrile (CH3-CN), has been studied by using circular dichroism and proton and carbon- 13 nuclear magnetic resonance (‘H NMR and I3C NMR). From analyses of the spectral data, it is concluded that VM forms a 2:l (peptideion-peptide) sandwich complex with Ca2+, at low concentration of VM. At moderate conocentrations of the salt, in addition to the sandwich complex, an equimolar (1:l) complex different from those observed for potassium and sodium is also observed. At very large concentrations of the calcium salt, the data suggested a complex with a conformation similar to that of the free VM in polar solvents. Possible conformations for the sandwich and the equimolar VM-calcium complexes are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the proton nmr studies of 2-thiocoumarin and coumarin, it is concluded that the relative interproton distances in the two oxygen heteroatom bicyclic systems are similar. The values for the phenyl ring protons do not deviate significantly from the regular hexagonal geometry, unlike bicyclic systems with nitrogens as the heteroatoms, such as diazanaphthalenes. Larger values of the indirect spin-spin couplings within the protons of the ring containing the oxygen heteroatom, compared to the values between the ortho protons in the phenyl rings in coumarin and 2-thiocoumarin, correspond to the olefinic nature of these protons. This is in contrast to results for the nitrogen heterocycles where both the rings are aromatic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.