797 resultados para 12-methyl-Tetradecanoic acid of total fatty acids
Resumo:
The changes occurring in the levels of nutritionally relevant oil components were assessed during repeated frying of potato chips in a blend of palm olein and canola oil (1:1 w/w). The blend suffered minimal reductions in omega-3 and omega-6 polyunsaturated fatty acids. There was no significant difference between the fatty acid composition of the oil extracted from the product and that of the frying medium, in all three cases. The blend also contained a significant amount of tocols which add a nutritional value to the oil. The concentration of the tocols was satisfactorily retained over the period of oil usage, in contrast to the significant loses observed in the case of the individual oils. The blend also performed well when assessed by changes in total polar compounds, free fatty acids, p-anisidine value. When fried in used oil, the product oil content increased progressively with oil usage time. This study shows that blended frying oils can combine good stability and nutritional quality
Resumo:
Freshwater fish are an important source of protein, but they also contain other highly nutritive components such as fats. Polyunsaturated fatty acids (PUFAs) are essential for normal growth, development and reproduction of vertebrates. The antioxidant role of vitamin E in cell membranes prevents fatty acid and cholesterol oxidation, thereby promoting PUFA and subcellular particle stabilization. The effects of vitamin E supplementation on the quality of Nile tilapia (Oreochromis niloticus) carcass were investigated. The experiments were carried out in an experimental laboratory over 106 d. After sex reversal, 400 early juvenile O. niloticus were tested in a completely randomized experiment with 5 treatments (4 repetitions each), consisting of vitamin E monophosphate supplementation at 0, 50, 100, 150 or 200 mg/kg of a base diet. Treatment diets contained equal amounts of protein and energy. Tilapias supplemented with vitamin E contained arachidonic acid (20:4 omega-6; AA) which participates in inflammatory response. Nile tilapia carcasses that received vitamin E at 100 and 150 mg/kg diet had improved carcass quality by increasing the PUFA:SFA ratio and had the highest levels of polyunsaturated fatty acids from the omega-3 (linolenic acid; 18:3 omega-3) and omega-6 (linoleic acid; 18:2 omega-6) series. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this trial was to document the total fatty acids in Murrah buffaloes milk on commercial farms in Brazil. Data from forty lactating Murrah-crossbred buffaloes were collected on five commercial farms located at Sarapui and Pilar do Sul, São Paulo-Brazil. A field survey was done from April to November 2002. In four farms, buffaloes were fed with wet brewers grains (primary concentrate). Only one farm (Farm 4) offered pasture and corn silage. Monthly milk samples were collected and stored at -20 degrees C until analyzed for fatty acid composition. The fatty acids with the highest percentage in total milk fat were C(16:0); C(18:1c9); C(18:0) and C(14:0). The average content observed in C(16:0) varied from 25.4 to 32.5%. Farm 4 (pasture plus corn silage) showed a higher C(16:0) value (32.5%). C(18:1c9) (varied) from 20.6 to 25.1%, C(14:0) varied from 5.9 to 8.9% and CLA content (C(18:2c9t11)) varied from 1.0 to 1.8%. Farm 3 presented higher average of C(18:1c9) (25.1%) and C(18:2c9t11) (1.8%), and lower average of C(14:0) (6.0%). Likewise, unsaturated fatty acids, C(18:1c9) and C(18:2c9t11) were higher on Farm 3. Probably, these results can be due to high CIA intakes derived from wet brewers grain and pasture. Long chain fatty acids varied from 34.2% (Farm 4) to 48.8% (Farm 3). In general, diets based on pasture and corn silage increased the levels of medium chain fatty acids in Murrah buffaloes milk.
Resumo:
Background: Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Methods: Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Results: Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling measurements while unsaturated lipid consumption was inversely correlated with these effects. Conclusion: Hypercaloric diet was associated with glycemic metabolism and systolic blood pressure disorders and cardiac remodeling. These effects directly and inversely correlated with saturated and unsaturated lipid consumption, respectively. © 2013 Oliveira Junior et al.; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Equilíbrio líquido-vapor do sistema destilado ácido do óleo de palma-dióxido de carbono a alta pressão. Foi investigado experimentalmente o equilíbrio líquido-vapor para o sistema Destilado Ácido de Óleo de Palma (PFAD)/Dióxido de Carbono, nas temperaturas de 333, 353 e 373 K e pressões de 20, 23, 26 e 29 MPa, usando-se o método estático. Os dados experimentais do sistema pseudo-binário PFAD/CO2 foram correlacionados com a equação de estado de Redlich-Kwong do pacote computacional ASPEN. O modelo reproduz bem os resultados experimentais. A seletividade obtida indica que o CO2 supercrítico é um solvente razoável para a separação em coluna multi-estágio e contínua, do ácido graxo saturado (ácido palmítico) daqueles insaturados (ácido oleico e ácido linoleico) contidos no PFAD.
Resumo:
The biodiversity of pelagic deep-sea ecosystems has received growing scientific interest in the last decade, especially in the framework of international marine biodiversity initiatives, such as Census of Marine Life (CoML). While a growing number of deep-sea zooplankton species has been identified and genetically characterized, little information is available on the mechanisms minimizing inter-specific competition and thus allowing closely related species to co-occur in the deep-sea pelagic realm. Focussing on the two dominant calanoid copepod families Euchaetidae and Aetideidae in Fram Strait, Arctic Ocean, the present study strives to characterize ecological niches of co-occurring species, with regard to vertical distribution, dietary composition as derived from lipid biomarkers, and trophic level on the basis of stable isotope signatures. Closely related species were usually restricted to different depth layers, resulting in a multi-layered vertical distribution pattern. Thus, vertical partitioning was an important mechanism to avoid inter-specific competition. Species occurring in the same depth strata usually belonged to different genera. They differed in fatty acid composition and trophic level, indicating different food preferences. Herbivorous Calanus represent major prey items for many omnivorous and carnivorous species throughout the water column. The seasonal and ontogenetic vertical migration of Calanus acts as a short-cut in food supply for pelagic deep-sea ecosystems in the Arctic.
Resumo:
Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs in prefermenters. In this study, a series of controlled batch experiments were conducted with sludge from a full-scale prefermenter to determine the impact of solids concentration, pH and addition of molasses on prefermentation processes. It was found that an increase in solids concentration enhanced total VFA production with an increased propionic acid fraction. The optimal pH for prefermentation was in the range of 6-7 with significant productivity loss when pH was below 5.5. Molasses addition significantly increased the production of VFAs particularly the propionic acid. However, the fermentation rate was likely limited by the biological activity of the sludge rather than by the amount of molasses added.
Resumo:
Freshwater fish are an important source of protein, but they also contain other highly nutritive components such as fats. Polyunsaturated fatty acids (PUFAs) are essential for normal growth, development and reproduction of vertebrates. The antioxidant role of vitamin E in cell membranes prevents fatty acid and cholesterol oxidation, thereby promoting PUFA and subcellular particle stabilization. The effects of vitamin E supplementation on the quality of Nile tilapia (Oreochromis niloticus) carcass were investigated. The experiments were carried out in an experimental laboratory over 106 d. After sex reversal, 400 early juvenile O. niloticus were tested in a completely randomized experiment with 5 treatments (4 repetitions each), consisting of vitamin E monophosphate supplementation at 0, 50, 100, 150 or 200 mg/kg of a base diet. Treatment diets contained equal amounts of protein and energy. Tilapias supplemented with vitamin E contained arachidonic acid (20:4 omega-6; AA) which participates in inflammatory response. Nile tilapia carcasses that received vitamin E at 100 and 150 mg/kg diet had improved carcass quality by increasing the PUFA:SFA ratio and had the highest levels of polyunsaturated fatty acids from the omega-3 (linolenic acid; 18:3 omega-3) and omega-6 (linoleic acid; 18:2 omega-6) series. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The seed oil from Nitraria tangutorum samples was obtained by supercritical carbon dioxide extraction methods. The extraction parameters for this methodology, including pressure, temperature, particle size and extraction time, were optimized. The free fatty acids in the seed oil were separated with a pre-column derivation method and 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-p-toluenesulfonate (BDETS) as a labeling regent, followed by high-performance liquid chromatography (HPLC) with fluorescence detection. The target compounds were identified by mass spectrometry with atmospheric pressure chemical ionization (APCI in positive-ion mode). HPLC analysis shows that the main compositions of the seed oil samples were free fatty acids (FFAs) in high to low concentrations as follows: linoleic acid, oleic acid, hexadecanoic acid and octadecanoic acid. The assay detection limits (at signal-to-noise of 3:1) were 3.378-6.572 nmol/L. Excellent linear responses were observed, with correlation coefficients greater than 0.999. The facile BDETS derivatization coupled with mass spectrometry detection allowed the development of a highly sensitive method for analyzing free fatty acids in seed oil by supercritical CO2 extraction. The established method is highly efficient for seed oil extraction and extremely sensitive for fatty acid profile determination. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Cholecystokinin (CCK) is a peptide hormone secreted from the I-cells of the intestine and it has important physiological actions related to appetite regulation and satiety. In this study we used STC-1 cells to investigate the effects of common dietary-derived fatty acids (FAs) on I-cell secretory function and metabolism. We extend earlier studies by measuring the acute and chronic effects of 11 FAs on CCK secretion, cellular CCK content, CCK mRNA levels, cellular DNA synthesis, cellular viability and cytotoxicity. FAs were selected in order to assess the importance of chain length, degree of saturation, and double bond position and conformation. The results demonstrate that secretory responses elicited by dietary FAs are highly selective. For example, altering the conformation of a double bond from cis to trans (i.e. oleic acid versus elaidic acid) completely abolishes CCK secretion. Lauric acid appears to adversely affect I-cell metabolism and arachidonic acid suppresses DNA synthesis. Our studies reveal for the first time that conjugated linoleic acid isoforms are particularly potent CCK secretagogues, which also boost intracellular stores of CCK. These actions of conjugated linoleic acid may explain satiating actions observed in dietary intervention studies.
Resumo:
The aquaculture industry aims at replacing significant amounts of marine fish oil by vegetable oils in fish diet. Dietary lipids have been shown to alter the fatty acid composition of bone compartments, which would impact the local production of factors controlling bone formation. Knowledge on the mechanisms underlying the nutritional regulation of bone metabolism is however scarce in fish. Two in vitro bone-derived cell systems developed from seabream (an important species for aquaculture in the Mediterranean region) vertebra, capable of in vitro mineralization and exhibiting prechondrocyte (VSa13) and pre-osteoblast (VSa16) phenotype, were used to assess the effect of certain polyunsaturated fatty acids (PUFAs; arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids) on cell proliferation, extracellular matrix (ECM) mineralization and gene expression. While all PUFAs promoted morphological changes in both cell lines, VSa16 cell proliferation appeared to be stimulated by PUFAs in a dose dependent manner until 100M, whereas proliferation of VSa13 cells was impaired at concentrations above 10M. AA, EPA and DHA inhibited VSa13 ECM mineralization, alone and in combination, while VSa16 ECM mineralization was only inhibited by AA and EPA. DHA had the opposite effect, increasing mineralization almost by 2 fold. When EFAs were combined, DHA apparently compensated for the inhibitory effect of AA and EPA. Expression of marker genes for bone and lipid metabolisms has been investigated by qPCR and shown to be regulated in pre-osteoblasts exposed to individual PUFAs. Our results show that PUFAs are effectors of fish bone cell lines, altering cell morphology, proliferation and mineralization when added to culture medium. This work also demonstrates the suitability of our in vitro cell systems to get insights into mineralization-related effects of PUFAs in vivo and to evaluate the replacement of fish oils by vegetable oil sources in fish feeds.
Mechanisms of lipid malabsorption in Cystic Fibrosis: the impact of essential fatty acids deficiency
Resumo:
Affiliation: CHU-Sainte-Justine, Université de Montréal
Resumo:
Purpose of review: Vascular function is recognized as an early and integrative marker of cardiovascular disease. While there is consistent evidence that the quantity of dietary fat has significant effects on vascular function, the differential effects of individual fatty acids is less clear. This review summarizes recent evidence from randomly controlled dietary studies on the impact of dietary fatty acids on vascular function, as determined by flow-mediated dilatation (FMD). Recent findings: Critical appraisal is given to five intervention studies (one acute, four chronic) which examined the impact of long-chain n-3 polyunsaturated fatty acid [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] on FMD. In the acute setting, a high dose of long-chain n-3 polyunsaturated fatty acid (4.9 g per 70 kg man) improved postprandial FMD significantly, compared with a saturated fatty acid-rich meal in healthy individuals. In longer-term studies, there was limited evidence for a significant effect of EPA/DHA on FMD in diseased groups. Summary: The strongest evidence for the benefits of EPA/DHA on vascular function is in the postprandial state. More evidence from randomly controlled intervention trials with foods will be required to substantiate the long-term effects of EPA/DHA, to inform public health and clinical recommendations.
Resumo:
Dairy intake, despite its high saturated fatty acid (SFA) content, is associated with a lower risk of cardiovascular disease and diabetes. This in vitro study determined the effect of individual fatty acids (FA) found in dairy, and FA mixtures representative of a high SFA and a low SFA dairy lipid on markers of endothelial function in healthy and type II diabetic aortic endothelial cells.