924 resultados para specification
Resumo:
Current explanatory models for binge eating in binge eating disorder (BED) mostly rely onmodels for bulimianervosa (BN), although research indicates different antecedents for binge eating in BED. This studyinvestigates antecedents and maintaining factors in terms of positive mood, negative mood and tension in asample of 22 women with BED using ecological momentary assessment over a 1-week. Values for negativemood were higher and those for positive mood lower during binge days compared with non-binge days.During binge days, negative mood and tension both strongly and significantly increased and positive moodstrongly and significantly decreased at the first binge episode, followed by a slight though significant, andlonger lasting decrease (negative mood, tension) or increase (positive mood) during a 4-h observation periodfollowing binge eating. Binge eating in BED seems to be triggered by an immediate breakdown of emotionregulation. There are no indications of an accumulation of negative mood triggering binge eating followed byimmediate reinforcing mechanisms in terms of substantial and stable improvement of mood as observed inBN. These differences implicate a further specification of etiological models and could serve as a basis fordeveloping new treatment approaches for BED.
Resumo:
Préface My thesis consists of three essays where I consider equilibrium asset prices and investment strategies when the market is likely to experience crashes and possibly sharp windfalls. Although each part is written as an independent and self contained article, the papers share a common behavioral approach in representing investors preferences regarding to extremal returns. Investors utility is defined over their relative performance rather than over their final wealth position, a method first proposed by Markowitz (1952b) and by Kahneman and Tversky (1979), that I extend to incorporate preferences over extremal outcomes. With the failure of the traditional expected utility models in reproducing the observed stylized features of financial markets, the Prospect theory of Kahneman and Tversky (1979) offered the first significant alternative to the expected utility paradigm by considering that people focus on gains and losses rather than on final positions. Under this setting, Barberis, Huang, and Santos (2000) and McQueen and Vorkink (2004) were able to build a representative agent optimization model which solution reproduced some of the observed risk premium and excess volatility. The research in behavioral finance is relatively new and its potential still to explore. The three essays composing my thesis propose to use and extend this setting to study investors behavior and investment strategies in a market where crashes and sharp windfalls are likely to occur. In the first paper, the preferences of a representative agent, relative to time varying positive and negative extremal thresholds are modelled and estimated. A new utility function that conciliates between expected utility maximization and tail-related performance measures is proposed. The model estimation shows that the representative agent preferences reveals a significant level of crash aversion and lottery-pursuit. Assuming a single risky asset economy the proposed specification is able to reproduce some of the distributional features exhibited by financial return series. The second part proposes and illustrates a preference-based asset allocation model taking into account investors crash aversion. Using the skewed t distribution, optimal allocations are characterized as a resulting tradeoff between the distribution four moments. The specification highlights the preference for odd moments and the aversion for even moments. Qualitatively, optimal portfolios are analyzed in terms of firm characteristics and in a setting that reflects real-time asset allocation, a systematic over-performance is obtained compared to the aggregate stock market. Finally, in my third article, dynamic option-based investment strategies are derived and illustrated for investors presenting downside loss aversion. The problem is solved in closed form when the stock market exhibits stochastic volatility and jumps. The specification of downside loss averse utility functions allows corresponding terminal wealth profiles to be expressed as options on the stochastic discount factor contingent on the loss aversion level. Therefore dynamic strategies reduce to the replicating portfolio using exchange traded and well selected options, and the risky stock.
Resumo:
Attrition in longitudinal studies can lead to biased results. The study is motivated by the unexpected observation that alcohol consumption decreased despite increased availability, which may be due to sample attrition of heavy drinkers. Several imputation methods have been proposed, but rarely compared in longitudinal studies of alcohol consumption. The imputation of consumption level measurements is computationally particularly challenging due to alcohol consumption being a semi-continuous variable (dichotomous drinking status and continuous volume among drinkers), and the non-normality of data in the continuous part. Data come from a longitudinal study in Denmark with four waves (2003-2006) and 1771 individuals at baseline. Five techniques for missing data are compared: Last value carried forward (LVCF) was used as a single, and Hotdeck, Heckman modelling, multivariate imputation by chained equations (MICE), and a Bayesian approach as multiple imputation methods. Predictive mean matching was used to account for non-normality, where instead of imputing regression estimates, "real" observed values from similar cases are imputed. Methods were also compared by means of a simulated dataset. The simulation showed that the Bayesian approach yielded the most unbiased estimates for imputation. The finding of no increase in consumption levels despite a higher availability remained unaltered. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Purpose To show that differences in the extent to which firms engage in unrelated diversification can be attributed to differences in ownership structure. Methodology/approach We draw on longitudinal data and use a panel analysis specification to test our hypotheses. Findings We find that unrelated diversification destroys value; pressure-sensitive Anglo-American owners in a firm’s equity reduce unrelated diversification, whereas pressure-resistant domestic owners increase unrelated diversification; the greater the firm’s free cash flow, the greater the negative effect of pressure-sensitive Anglo-American owners on unrelated diversification. Research limitations/implications We contribute to corporate governance and strategy research by bringing in owners’ institutional origin as a shaper of owner preferences in particular with regards to unrelated diversification. Future research may expand our investigation to more than one home institutional context, and theorize on institutional origin effects beyond the dichotomy between Anglo-American and non-Anglo-American (not oriented toward shareholder value maximization) owners. Practical implications Policy makers, financial analysts, owners, and managers may want to reflect about the implications of ownership structure, as well as promoting or joining corporations with particular ownership configurations. Social implications A shareholder value-destroying strategy, such as unrelated diversification has adverse consequences for society at large, in terms of opportunity costs, that is, resources could be allocated to value-creating activities instead. Promoting an ownership configuration that creates value should contribute to social welfare. Originality/value Owners may not be exclusively driven by shareholder value maximization, but can be influenced by normative beliefs (biases) stemming from the institutional context they originate from.
Resumo:
Value chain collaboration has been a prevailing topic for research, and there is a constantly growing interest in developing collaborative models for improved efficiency in logistics. One area of collaboration is demand information management, which enables improved visibility and decrease of inventories in the value chain. Outsourcing of non-core competencies has changed the nature of collaboration from intra-enterprise to cross-enterprise activity, and this together with increasing competition in the globalizing markets have created a need for methods and tools for collaborative work. The retailer part in the value chain of consumer packaged goods (CPG) has been studied relatively widely, proven models have been defined, and there exist several best practice collaboration cases. The information and communications technology has developed rapidly, offering efficient solutions and applications to exchange information between value chain partners. However, the majority of CPG industry still works with traditional business models and practices. This concerns especially companies operating in the upstream of the CPG value chain. Demand information for consumer packaged goods originates at retailers' counters, based on consumers' buying decisions. As this information does not get transferred along the value chain towards the upstream parties, each player needs to optimize their part, causing safety margins for inventories and speculation in purchasing decisions. The safety margins increase with each player, resulting in a phenomenon known as the bullwhip effect. The further the company is from the original demand information source, the more distorted the information is. This thesis concentrates on the upstream parts of the value chain of consumer packaged goods, and more precisely the packaging value chain. Packaging is becoming a part of the product with informative and interactive features, and therefore is not just a cost item needed to protect the product. The upstream part of the CPG value chain is distinctive, as the product changes after each involved party, and therefore the original demand information from the retailers cannot be utilized as such – even if it were transferred seamlessly. The objective of this thesis is to examine the main drivers for collaboration, and barriers causing the moderate adaptation level of collaborative models. Another objective is to define a collaborative demand information management model and test it in a pilot business situation in order to see if the barriers can be eliminated. The empirical part of this thesis contains three parts, all related to the research objective, but involving different target groups, viewpoints and research approaches. The study shows evidence that the main barriers for collaboration are very similar to the barriers in the lower part of the same value chain; lack of trust, lack of business case and lack of senior management commitment. Eliminating one of them – the lack of business case – is not enough to eliminate the two other barriers, as the operational model in this thesis shows. The uncertainty of the future, fear of losing an independent position in purchasing decision making and lack of commitment remain strong enough barriers to prevent the implementation of the proposed collaborative business model. The study proposes a new way of defining the value chain processes: it divides the contracting and planning process into two processes, one managing the commercial parts and the other managing the quantity and specification related issues. This model can reduce the resistance to collaboration, as the commercial part of the contracting process would remain the same as in the traditional model. The quantity/specification-related issues would be managed by the parties with the best capabilities and resources, as well as access to the original demand information. The parties in between would be involved in the planning process as well, as their impact for the next party upstream is significant. The study also highlights the future challenges for companies operating in the CPG value chain. The markets are becoming global, with toughening competition. Also, the technology development will most likely continue with a speed exceeding the adaptation capabilities of the industry. Value chains are also becoming increasingly dynamic, which means shorter and more agile business relationships, and at the same time the predictability of consumer demand is getting more difficult due to shorter product life cycles and trends. These changes will certainly have an effect on companies' operational models, but it is very difficult to estimate when and how the proven methods will gain wide enough adaptation to become standards.
Resumo:
Layout planning is a process of sizing and placing rooms (e.g. in a house) while a t t empt ing to optimize various criteria. Often the r e are conflicting c r i t e r i a such as construction cost, minimizing the distance between r e l a t ed activities, and meeting the area requirements for these activities. The process of layout planning ha s mostly been done by hand, wi th a handful of a t t empt s to automa t e the process. Thi s thesis explores some of these pa s t a t t empt s and describes several new techniques for automa t ing the layout planning process using evolutionary computation. These techniques a r e inspired by the existing methods, while adding some of the i r own innovations. Additional experimenLs are done to t e s t the possibility of allowing polygonal exteriors wi th rectilinear interior walls. Several multi-objective approaches are used to evaluate and compare fitness. The evolutionary r epr e s ent a t ion and requirements specification used provide great flexibility in problem scope and depth and is worthy of considering in future layout and design a t t empt s . The system outlined in thi s thesis is capable of evolving a variety of floor plans conforming to functional and geometric specifications. Many of the resulting plans look reasonable even when compared to a professional floor plan. Additionally polygonal and multi-floor buildings were also generated.
Resumo:
Printed blank by which John Brown Cullen solemnly declares that he is experienced in the art of measuring and culling timber. He states that he is entering into the service of Burton and Bro. of Barrie He will make out the specification of the timber in berths 192 and 198 and submit his findings to Burton and Brother, Oct. 22, 1877.
Resumo:
Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.
Resumo:
This paper proposes finite-sample procedures for testing the SURE specification in multi-equation regression models, i.e. whether the disturbances in different equations are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show that the latter statistics are pivotal under the null, which provides the justification for applying MC tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982) to the multi-equation framework. Specifically, we introduce several induced tests based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated combination problem. The properties of the proposed tests are studied in a Monte Carlo experiment which shows that standard asymptotic tests exhibit important size distortions, while MC tests achieve complete size control and display good power. Moreover, MC-QLR tests performed best in terms of power, a result of interest from the point of view of simulation-based tests. The power of the MC induced tests improves appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of growth.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
Dans ce texte, nous analysons les développements récents de l’économétrie à la lumière de la théorie des tests statistiques. Nous revoyons d’abord quelques principes fondamentaux de philosophie des sciences et de théorie statistique, en mettant l’accent sur la parcimonie et la falsifiabilité comme critères d’évaluation des modèles, sur le rôle de la théorie des tests comme formalisation du principe de falsification de modèles probabilistes, ainsi que sur la justification logique des notions de base de la théorie des tests (tel le niveau d’un test). Nous montrons ensuite que certaines des méthodes statistiques et économétriques les plus utilisées sont fondamentalement inappropriées pour les problèmes et modèles considérés, tandis que de nombreuses hypothèses, pour lesquelles des procédures de test sont communément proposées, ne sont en fait pas du tout testables. De telles situations conduisent à des problèmes statistiques mal posés. Nous analysons quelques cas particuliers de tels problèmes : (1) la construction d’intervalles de confiance dans le cadre de modèles structurels qui posent des problèmes d’identification; (2) la construction de tests pour des hypothèses non paramétriques, incluant la construction de procédures robustes à l’hétéroscédasticité, à la non-normalité ou à la spécification dynamique. Nous indiquons que ces difficultés proviennent souvent de l’ambition d’affaiblir les conditions de régularité nécessaires à toute analyse statistique ainsi que d’une utilisation inappropriée de résultats de théorie distributionnelle asymptotique. Enfin, nous soulignons l’importance de formuler des hypothèses et modèles testables, et de proposer des techniques économétriques dont les propriétés sont démontrables dans les échantillons finis.
Resumo:
This paper develops a model of money demand where the opportunity cost of holding money is subject to regime changes. The regimes are fully characterized by the mean and variance of inflation and are assumed to be the result of alternative government policies. Agents are unable to directly observe whether government actions are indeed consistent with the inflation rate targeted as part of a stabilization program but can construct probability inferences on the basis of available observations of inflation and money growth. Government announcements are assumed to provide agents with additional, possibly truthful information regarding the regime. This specification is estimated and tested using data from the Israeli and Argentine high inflation periods. Results indicate the successful stabilization program implemented in Israel in July 1985 was more credible than either the earlier Israeli attempt in November 1984 or the Argentine programs. Government’s signaling might substantially simplify the inference problem and increase the speed of learning on the part of the agents. However, under certain conditions, it might increase the volatility of inflation. After the introduction of an inflation stabilization plan, the welfare gains from a temporary increase in real balances might be high enough to induce agents to raise their real balances in the short-term, even if they are uncertain about the nature of government policy and the eventual outcome of the stabilization attempt. Statistically, the model restrictions cannot be rejected at the 1% significance level.
Resumo:
Using data from the National Longitudinal Survey of Youth (NLSY), we re-examine the effect of formal on-the-job training on mobility patterns of young American workers. By employing parametric duration models, we evaluate the economic impact of training on productive time with an employer. Confirming previous studies, we find a positive and statistically significant impact of formal on-the-job training on tenure with the employer providing the training. However, the expected net duration of the time spent in the training program is generally not significantly increased. We proceed to document and analyze intra-sectoral and cross-sectoral mobility patterns in order to infer whether training provides firm-specific, industry-specific, or general human capital. The econometric analysis rejects a sequential model of job separation in favor of a competing risks specification. We find significant evidence for the industry-specificity of training. The probability of sectoral mobility upon job separation decreases with training received in the current industry, whether with the last employer or previous employers, and employment attachment increases with on-the-job training. These results are robust to a number of variations on the base model.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.