843 resultados para shape displays
Resumo:
A long period grating (LPG) fabricated in progressive three-layered (PTL) fibre is described. The grating with a period of 391µm, had dual attenuation bands associated with a particular cladding mode. The dual attenuation bands have been experimentally characterised for their spectral sensitivity to bending, which resulted in the highest sensitivity to bending seen for this particular fibre and temperature. The spectral characteristics of the fibre have been modelled giving good agreement to the experimental data as well as showing that the attenuation bands are both associated with the second order HE/EH2,n cladding mode.
Resumo:
We present an implementation of high-sensitivity optical chemsensors based on FBGs UV-inscribed in D-shape and multimode fibres and sensitized by HF-etching treatment, demonstrating a capability of detecting chemical concentration changes as small as < 0.5%.
Resumo:
This paper explores the design, development and evaluation of a novel real-time auditory display system for accelerated racing driver skills acquisition. The auditory feedback provides concurrent sensory augmentation and performance feedback using a novel target matching design. Real-time, dynamic, tonal audio feedback representing lateral G-force (a proxy for tire slip) is delivered to one ear whilst a target lateral G-force value representing the ‘limit’ of the car, to which the driver aims to drive, is panned to the driver’s other ear; tonal match across both ears signifies that the ‘limit’ has been reached. An evaluation approach was established to measure the efficacy of the audio feedback in terms of performance, workload and drivers’ assessment of self-efficacy. A preliminary human subject study was conducted in a driving simulator environment. Initial results are encouraging, indicating that there is potential for performance gain and driver confidence enhancement based on the audio feedback.
Resumo:
Shape memory alloys are a special class of metals that can undergo large deformation yet still be able to recover their original shape through the mechanism of phase transformations. However, when they experience plastic slip, their ability to recover their original shape is reduced. This is due to the presence of dislocations generated by plastic flow that interfere with shape recovery through the shape memory effect and the superelastic effect. A one-dimensional model that captures the coupling between shape memory effect, the superelastic effect and plastic deformation is introduced. The shape memory alloy is assumed to have only 3 phases: austenite, positive variant martensite and negative variant martensite. If the SMA flows plastically, each phase will exhibit a dislocation field that permanently prevents a portion of it from being transformed back to other phases. Hence, less of the phase is available for subsequent phase transformations. A constitutive model was developed to depict this phenomena and simulate the effect of plasticity on both the shape memory effect and the superelastic effect in shape memory alloys. In addition, experimental tests were conducted to characterize the phenomenon in shape memory wire and superelastic wire. ^ The constitutive model was then implemented in within a finite element context as UMAT (User MATerial Subroutine) for the commercial finite element package ABAQUS. The model is phenomenological in nature and is based on the construction of stress-temperature phase diagram. ^ The model has been shown to be capable of capturing the qualitative and quantitative aspects of the coupling between plasticity and the shape memory effect and plasticity and the super elastic effect within acceptable limits. As a verification case a simple truss structure was built and tested and then simulated using the FEA constitutive model. The results where found to be close the experimental data. ^
Resumo:
Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.
Resumo:
Hydroperiod and nutrient status are known to influence aquatic communities in wetlands, but their joint effects are not well explored. I sampled floating periphyton mat and flocculent detritus (floc) infaunal communities using 6-cm diameter cores at short- and long-hydroperiod and constantly inundated sites across a range of phosphorus (P) availability (total phosphorus in soil, floc and periphyton). Differences in community structure between periphyton and floc microhabitats were greater than any variation attributable to hydroperiod, P availability, or other spatial factors. Multivariate analyses indicated community structure of benthic-floc infauna was driven by hydroperiod, although crowding (no. g−1 AFDM) of individual taxa showed no consistent responses to hydroperiod or P availability. In contrast, community structure of periphyton mat infauna was driven by P availability, while densities of mat infauna (no. m−2) were most influenced by hydroperiod (+correlations). Crowding of mat infauna increased significantly with P availability in short-hydroperiod marshes, but was constant across the P gradient in long-hydroperiod marshes. Increased abundance of floating-periphyton mat infauna with P availability at short-hydroperiod sites may result from a release from predation by small fish. Community structure and density were not different between long-hydroperiod and constantly inundated sites. These results have implications for the use of macroinvertebrates as indicators of water quality in wetlands and suggest the substrate sampled can influence interpretation of ecological responses observed in these communities.
Resumo:
This investigation reports the magnetic field effect on natural convection heat transfer in a curved-shape enclosure. The numerical investigation is carried out using the control volume-based-finite element method (CVFEM). The numerical investigations are performed for various values of Hartmann number and Rayleigh number. The obtained results are depicted in terms of streamlines and isotherms which show the significant effects of Hartmann number on the fluid flow and temperature distribution inside the enclosure. Also, it was found that the Nusselt number decreases with an increase in the Hartmann number.
Resumo:
El presente trabajo consiste en dos partes diferenciadas: la principal de ellas (Cap tulos 1 y 2) est a dedicada a introducir estructura adicional en grupos que aparecen de manera natural en el contexto de la teor a de la forma. En la segunda parte (Cap tulo 3), se plantea c omo generalizar la teor a de espacios recubridores y, en particular, se propone una l nea de trabajo relacionada con la teor a de la forma. El punto de partida de esta tesis doctoral son los trabajos [25, 26, 68, 69, 70] en los que los autores introducen y utilizan algunas ultram etricas en el conjunto de los mor smos shape entre dos espacios topol ogicos punteados. En particular, si el dominio es (S1; 1); la construcci on realizada en [68] permite explicitar una ultram etrica en el grupo shape 1(X; x0) de un espacio m etrico compacto X; como ya fue observado en [69] y [80]. Si el espacio no es m etrico compacto, la construcci on nos lleva a utilizar el concepto de ultram etrica generalizada, en el sentido de Priess-Crampe y Ribenboim [78, 79]. En [7], D. K. Biss introduce la idea de topologizar el grupo fundamental de un espacio, de forma que la topolog a en 1(X; x0) sea una topolog a de grupo que permita detectar la (no) existencia de un recubridor universal para X: La forma de proceder sugerida es tomar en 1(X; x0)la toplog a cociente inducida por la topolog a compacto-abierta en el espacio de lazos (X; x0): Sin embargo, hay algunos errores en el art culo mencionado: en concreto, el error relacionado con el presente trabajo fue puesto de mani esto por P. Fabel en [33], mostrando que, en general, la operaci on de grupo en 1(X; x0)con la topolog a cociente no es continua. Utilizando un punto de vista similar, varios autores han tratado de dotar al grupo fundamental con una topolog a, de forma que 1(X; x0) sea un grupo topol ogico y la proyecci on q (X; x0){u100000} 1(X; x0)sea continua...
Resumo:
Esta tesis trata sobre aproximaciones de espacios métricos compactos. La aproximación y reconstrucción de espacios topológicos mediante otros más sencillos es un tema antigüo en topología geométrica. La idea es construir un espacio muy sencillo lo más parecido posible al espacio original. Como es muy difícil (o incluso no tiene sentido) intentar obtener una copia homeomorfa, el objetivo será encontrar un espacio que preserve algunas propriedades topológicas (algebraicas o no) como compacidad, conexión, axiomas de separación, tipo de homotopía, grupos de homotopía y homología, etc. Los primeros candidatos como espacios sencillos con propiedades del espacio original son los poliedros. Ver el artículo [45] para los resultados principales. En el germen de esta idea, destacamos los estudios de Alexandroff en los años 20, relacionando la dimensión del compacto métrico con la dimensión de ciertos poliedros a través de aplicaciones con imágenes o preimágenes controladas (en términos de distancias). En un contexto más moderno, la idea de aproximación puede ser realizada construyendo un complejo simplicial basado en el espacio original, como el complejo de Vietoris-Rips o el complejo de Cech y comparar su realización con él. En este sentido, tenemos el clásico lema del nervio [12, 21] el cual establece que para un recubrimiento por abiertos “suficientemente bueno" del espacio (es decir, un recubrimiento con miembros e intersecciones contractibles o vacías), el nervio del recubrimiento tiene el tipo de homotopía del espacio original. El problema es encontrar estos recubrimientos (si es que existen). Para variedades Riemannianas, existen algunos resultados en este sentido, utilizando los complejos de Vietoris-Rips. Hausmann demostró [35] que la realización del complejo de Vietoris-Rips de la variedad, para valores suficientemente bajos del parámetro, tiene el tipo de homotopía de dicha variedad. En [40], Latschev demostró una conjetura establecida por Hausmann: El tipo de homotopía de la variedad se puede recuperar utilizando un conjunto finito de puntos (suficientemente denso) para el complejo de Vietoris-Rips. Los resultados de Petersen [58], comparando la distancia Gromov-Hausdorff de los compactos métricos con su tipo de homotopía, son también interesantes. Aquí, los poliedros salen a relucir en las demostraciones, no en los resultados...
Resumo:
A thermal evaporation method developed in the research group enables to grow and design several morphologies of semiconducting oxide nanostructures, such as Ga_2O_3, GeO_2 or Sb_2O_3, among others, and some ternary oxide compounds (ZnGa_2O_4, Zn_2GeO_4). In order to tailor physical properties, a successful doping of these nanostructures is required. However, for nanostructured materials, doping may affect not only their physical properties, but also their morphology during the thermal growth process. In this paper, we will show some examples of how the addition of impurities may result into the formation of complex structures, or changes in the structural phase of the material. In particular, we will consider the addition of Sn and Cr impurities into the precursors used to grow Ga_2O_3, Zn_2GeO_4 and Sb_2O_3 nanowires, nanorods or complex nanostructures, such as crossing wires or hierarchical structures. Structural and optical properties were assessed by electron microscopy (SEM and TEM), confocal microscopy, spatially resolved cathodoluminescence (CL), photoluminescence, and Raman spectroscopies. The growth mechanisms, the luminescence bands and the optical confinement in the obtained oxide nanostructures will be discussed. In particular, some of these nanostructures have been found to be of interest as optical microcavities. These nanomaterials may have applications in optical sensing and energy devices.
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
Funding was provided in part by the US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) K23 AR061406 (Nelson); US National Institutes of Health (NIH)/NIAMS P60AR30701 (Jordan/Renner/Schwartz); US Centers for Disease Control/Association of Schools of Public Health S043 and S3486 (Jordan/Renner); K24-AR04884, P50-AR063043, and P50-AR060752 (Lane); and NIH/National Center for Advancing Translational Sciences KL2TR001109 (Golightly).
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
Funding was provided in part by the US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) K23 AR061406 (Nelson); US National Institutes of Health (NIH)/NIAMS P60AR30701 (Jordan/Renner/Schwartz); US Centers for Disease Control/Association of Schools of Public Health S043 and S3486 (Jordan/Renner); K24-AR04884, P50-AR063043, and P50-AR060752 (Lane); and NIH/National Center for Advancing Translational Sciences KL2TR001109 (Golightly).
Resumo:
Peer reviewed