926 resultados para reinforcement sensitivity
Resumo:
Dans le but d’examiner les mécanismes qui sous-tendent le développement de la sécurité d’attachement chez l’enfant, Grossmann et al. (1999; 2008) proposent une perspective plus vaste de l’étude de l’attachement chez l’enfant, examinant les comportements parentaux pertinents aux deux côtés de l’équilibre entre le système d’attachement et le système d’exploration. La thèse se base sur cette approche pour explorer la relation entre la sécurité d’attachement chez l’enfant et deux comportements maternels, soit la sensibilité maternelle et le soutien à l’autonomie maternel, de même que la relation entre ces deux comportements et l’état d’esprit maternel face à l’attachement. Le premier article propose que la théorie de l’autodétermination, avec ses études empiriques portant sur les comportements parentaux liés à l’exploration, offre une perspective utile pour l’étude des comportements d’exploration dans le cadre de l’équilibre attachement/exploration. L’article présente une revue théorique et empirique des domaines de l’attachement et de la théorie de l’autodétermination et souligne des analogies conceptuelles et empiriques entre les deux domaines, en plus de décrire la façon dont ils se complètent et se complémentent. Le deuxième article étudie les liens entre la sensibilité maternelle, le soutien à l’autonomie maternel et la sécurité d’attachement chez l’enfant. Soixante et onze dyades ont participé à deux visites à domicile. La sensibilité maternelle a été évaluée lorsque les enfants étaient âgés de 12 mois, alors que le soutien à l’autonomie maternel et la sécurité d’attachement chez l’enfant l’ont été lorsque les enfants avaient atteint l’âge de 15 mois. Les résultats indiquent que le soutien à l’autonomie maternel explique une portion significative de la variance de la sécurité d’attachement, et ce, après avoir contrôlé pour la sensibilité maternelle et le statut socio-économique. Le troisième article examine les relations entre deux dimensions de l’état d’esprit maternel face à l’attachement (esquivant et préoccupé/non-résolu), la sensibilité maternelle et le soutien à l’autonomie maternel. Soixante et onze dyades ont participé à trois visites à domicile. L’Entrevue d’Attachement Adulte (EAA) a été administrée lorsque les enfants étaient âgés de 8 mois, la sensibilité maternelle a été évaluée alors qu’ils avaient atteint l’âge de 12 mois et le soutien à l’autonomie maternel, lorsqu’ils avaient 15 mois. Les résultats révèlent qu’après avoir contrôlé pour le statut socio-économique, la sensibilité maternelle est liée de façon négative à la dimension « esquivant » de l’EAA, alors que le soutien à l’autonomie maternel est lié de façon négative à la dimension « préoccupé/non-résolu ». Les résultats présentés dans le deuxième et le troisième article sont discutés, de même que de leurs répercussions théoriques et cliniques. Des questions susceptibles de guider des recherches futures sont proposées.
Resumo:
Cet article étudie la sensibilité des estimations de certaines variables explicatives de la croissance économique dans des régressions en coupe transversale sur un ensemble de pays. Il applique un modèle modifié de l’analyse de sensibilité de Leamer (1983, 1985). Mes résultats confirment la conclusion de Levine and Renelt (1992), toutefois, je montre que plus de variables sont solidement corrélées à la croissance économique. Entre 1990-2010, je trouve que huit sur vingt cinq variables ont des coefficients significatifs et sont solidement corrélées à la croissance de long terme, notamment, les parts de l’investissement et des dépenses étatiques dans le PIB, la primauté du droit et une variable dichotomique pour les pays subsahariens. Je trouve aussi une preuve empirique solide de l'hypothèse de la convergence conditionnelle, ce qui est cohérent avec le modèle de croissance néoclassique.
Resumo:
In the last few years, the development of a plasmid-based reverse genetics system for mammalian reovirus has allowed the production and characterization of mutant viruses. This could be especially significant in the optimization of reovirus strains for virotherapeutic applications, either as gene vectors or oncolytic viruses. The genome of a mutant virus exhibiting increased sensitivity to interferon was completely sequenced and compared with its parental virus. Viruses corresponding to either the parental or mutant viruses were then rescued by reverse genetics and shown to exhibit the expected phenotypes. Systematic rescue of different viruses harboring either of the four parental genes in a mutant virus backbone, or reciprocally, indicated that a single amino acid substitution in one of λ2 methyltransferase domains is the major determinant of the difference in interferon sensitivity between these two viruses.
Resumo:
The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.
Resumo:
The increasing tempo of construction activity the world over creates heavy pressure on existing land space. The quest for new and competent site often points to the needs for improving existing sites, which are otherwise deemed unsuitable for adopting conventional foundations. This is accomplished by ground improvement methods, which are employed to improve the quality of soil incompetent in their natural state. Among the construction activities, a well-connected road network is one of the basic infrastructure requirements, which play a vital role for the fast and comfortable movement of inter- regional traffic in countries like India.One of the innovative ground improvement techniques practised all over the world is the use of geosynthetics, which include geotextiles, geomembranes, geogrids, etc . They offer the advantages such as space saving, enviromnental sensitivity, material availability, technical superiority, higher cost savings, less construction time, etc . Because of its fundamental properties, such as tensile strength, filtering and water permeability, a geotextile inserted between the base material and sub grade can function as reinforcement, a filter medium, a separation layer and as a drainage medium. Though polymeric geotextiles are used in abundant quantities, the use of natural geotextiles (like coir, jute, etc.) has yet to get momentum. This is primarily due to the lack of research work on natural geotextilcs for ground improvement, particularly in the areas of un paved roads. Coir geotextiles are best suited for low cost applications because of its availability at low prices compared to its synthetic counterparts. The proper utilisation of coir geotextilcs in various applications demands large quantities of the product, which in turn can create a boom in the coir industry. The present study aims at exploring the possibilities of utilising coir geotextiles for unpaved roads and embankments.The properties of coir geotextiles used have been evaluated. The properties studied include mass per unit area, puncture resistance, tensile strength, secant modulus, etc . The interfacial friction between soils and three types of coir geotextiles used was also evaluated. It was found that though the parameters evaluated for coir geotextiles have low values compared to polymeric geotextiles, the former are sufficient for use in unpaved roads and embankments. The frictional characteristics of coir geotextile - soil interfaces are extremely good and satisfy the condition set by the International Geosynthetic Society for varied applications.The performance of coir geotextiles reinforced subgrade was studied by conducting California Bearing Ratio (CBR) tests. Studies were made with coir geotextiles placed at different levels and also in multiple layers. The results have shown that the coir geotextile enhances the subgrade strength. A regression analysis was perfonned and a mathematical model was developed to predict the CBR of the coir geotextile reinforced subgrade soil as a function of the soil properties, coir geotextile properties, and placement depth of reinforcement.The effects of coir geotextiles on bearing capacity were studied by perfonning plate load tests in a test tan1e This helped to understand the functioning of geotextile as reinforcement in unpaved roads and embankments. The perfonnance of different types of coir geotextiles with respect to the placement depth in dry and saturated conditions was studied. The results revealed that the bearing capacity of coir-reinforced soil is increasing irrespective of the type of coir geotextiles and saturation condition.The rut behaviour of unreinforced and coir reinforced unpaved road sections were compared by conducting model static load tests in a test tank and also under repetitive loads in a wheel track test facility. The results showed that coir geotextiles could fulfill the functions as reinforcement and as a separator, both under static and repetitive loads. The rut depth was very much reduced whik placing coir geotextiles in between sub grade and sub base.In order to study the use of Coir geotextiles in improving the settlement characteristics, two types of prefabricated COlf geotextile vertical drains were developed and their time - settlement behaviour were studied. Three different dispositions were tried. It was found that the coir geotextile drains were very effective in reducing consolidation time due to radial drainage. The circular drains in triangular disposition gave maximum beneficial effect.In long run, the degradation of coir geotextile is expected, which results in a soil - fibre matrix. Hence, studies pertaining to strength and compressibility characteristics of soil - coir fibre composites were conducted. Experiments were done using coir fibres having different aspect ratios and in different proportions. The results revealed that the strength of the soil was increased by 150% to 200% when mixed with 2% of fibre having approximately 12mm length, at all compaction conditions. Also, the coefficient of consolidation increased and compression index decreased with the addition of coir fibre.Typical design charts were prepared for the design of coir geotextile reinforced unpaved roads. Some illustrative examples are also given. The results demonstrated that a considerable saving in subase / base thickness can he achieved with the use of eoir geotextiles, which in turn, would save large quantities of natural aggregates.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
In the present work, studies on vulcanization, rheology and reinforcement of natural rubber latex with special reference to accelerator combinations, surface active agents and gamma irradiation have been undertaken. In vulcanization, the choice of vulcanization system, the extent and mc-zie of vulcanization and network structure of the vulcanizate are important factors contributing to the overall quality of the product. The vulcanization system may be conventional type using elemental sulfur or a system involving sulfur donors. The latter type is used mainly in the manufacture of heat resistant products. For improving the technical properties of the products such as modulus and tensile strength, different accelerator combinations are used. It is known that accelerators have a strong effect on the physical properties of rubber vulcanizates. A perusal of the literature indicates that fundamental studies on the above aspects of latex technology are very limited. Thereforea systematic study on vulcanization, rheology and reinforcement of natural rubber latex with reference to the effect of accelerator combinations, surface active agents and gamma irradiation has been undertaken. The preparation and evaluation of some products like latex thread was also undertaken as a part of the study. The thesis consists of six chapter
Resumo:
Prevalence and antibiotic resistance of Escherichia coli in the water and sediment samples of brackish water aquaculture ponds adjacent to Cochin backwaters was analysed. More than 50% of the water samples and more than 80% of sediment samples from all the sampling stations were tested positive for £. coli. Risk assessment of the E. coli strains was carried out using multiple antibiotic resistance (MAR) indexing. Majority of the strains were found to be multiple antibiotic resistant suggesting their origin from high risk sources of contamination such as human where antibiotics are frequently used. While none of the £. coli strains were resistant against amikacin, chloramphenicol, streptomycin and trimethoprim, considerable levels of resistance was encountered against ampicillin, erythromycin, penicillin G and vancomycin. High prevalence of £. coli in the water and sediment samples of this extensive brackish water ponds indicates high degree of faecal pollution of this environment. The high risk nature of the strains warrants efficient post harvest and processing measures to avoid health risk to consumers
Resumo:
Reinforcement Learning (RL) refers to a class of learning algorithms in which learning system learns which action to take in different situations by using a scalar evaluation received from the environment on performing an action. RL has been successfully applied to many multi stage decision making problem (MDP) where in each stage the learning systems decides which action has to be taken. Economic Dispatch (ED) problem is an important scheduling problem in power systems, which decides the amount of generation to be allocated to each generating unit so that the total cost of generation is minimized without violating system constraints. In this paper we formulate economic dispatch problem as a multi stage decision making problem. In this paper, we also develop RL based algorithm to solve the ED problem. The performance of our algorithm is compared with other recent methods. The main advantage of our method is it can learn the schedule for all possible demands simultaneously.
Resumo:
This paper presents Reinforcement Learning (RL) approaches to Economic Dispatch problem. In this paper, formulation of Economic Dispatch as a multi stage decision making problem is carried out, then two variants of RL algorithms are presented. A third algorithm which takes into consideration the transmission losses is also explained. Efficiency and flexibility of the proposed algorithms are demonstrated through different representative systems: a three generator system with given generation cost table, IEEE 30 bus system with quadratic cost functions, 10 generator system having piecewise quadratic cost functions and a 20 generator system considering transmission losses. A comparison of the computation times of different algorithms is also carried out.
Resumo:
Unit Commitment Problem (UCP) in power system refers to the problem of determining the on/ off status of generating units that minimize the operating cost during a given time horizon. Since various system and generation constraints are to be satisfied while finding the optimum schedule, UCP turns to be a constrained optimization problem in power system scheduling. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision making task and an efficient Reinforcement Learning solution is formulated considering minimum up time /down time constraints. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
This paper presents a Reinforcement Learning (RL) approach to economic dispatch (ED) using Radial Basis Function neural network. We formulate the ED as an N stage decision making problem. We propose a novel architecture to store Qvalues and present a learning algorithm to learn the weights of the neural network. Even though many stochastic search techniques like simulated annealing, genetic algorithm and evolutionary programming have been applied to ED, they require searching for the optimal solution for each load demand. Also they find limitation in handling stochastic cost functions. In our approach once we learn the Q-values, we can find the dispatch for any load demand. We have recently proposed a RL approach to ED. In that approach, we could find only the optimum dispatch for a set of specified discrete values of power demand. The performance of the proposed algorithm is validated by taking IEEE 6 bus system, considering transmission losses
Resumo:
Unit commitment is an optimization task in electric power generation control sector. It involves scheduling the ON/OFF status of the generating units to meet the load demand with minimum generation cost satisfying the different constraints existing in the system. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision task and Reinforcement Learning solution is formulated through one efficient exploration strategy: Pursuit method. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
A/though steel is most commonly used as a reinforcing material in concrete due to its competitive cost and favorable mechanical properties, the problem of corrosion of steel rebars leads to a reduction in life span of the structure and adds to maintenance costs. Many techniques have been developed in recent past to reduce corrosion (galvanizing, epoxy coating, etc.) but none of the solutions seem to be viable as an adequate solution to the corrosion problem. Apart from the use of fiber reinforced polymer (FRP) rebars, hybrid rebars consisting of both FRP and steel are also being tried to overcome the problem of steel corrosion. This paper evaluates the performance of hybrid rebars as longitudinal reinforcement in normal strength concrete beams. Hybrid rebars used in this study essentially consist of glass fiber reinforced polymer (GFRP) strands of 2 mm diameter wound helically on a mild steel core of 6 mm diameter. GFRP stirrups have been used as shear reinforcement. An attempt has been made to evaluate the flexural and shear performance of beams having hybrid rebars in normal strength concrete with and without polypropylene fibers added to the concrete matrix
Resumo:
This paper presents the results of a study on the use of rice husk ash (RHA) for property modification of high density polyethylene (HDPE). Rice husk is a waste product of the rice processing industry. It is used widely as a fuel which results in large quantities of RHA. Here, the characterization of RHA has been done with the help of X-ray diffraction (XRD), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), light scattering based particle size analysis, Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Most reports suggest that RHA when blended directly with polymers without polar groups does not improve the properties of the polymer substantially. In this study RHA is blended with HDPE in the presence of a compatibilizer. The compatibilized HDPE-RHA blend has a tensile strength about 18% higher than that of virgin HDPE. The elongation-at-break is also higher for the compatibilized blend. TGA studies reveal that uncompatibilized as well as compatibilized HDPERHA composites have excellent thermal stability. The results prove that RHA is a valuable reinforcing material for HDPE and the environmental pollution arising from RHA can be eliminated in a profitable way by this technique.