929 resultados para recombinant allophycoeyanin
Resumo:
Increasing concern about global climate warming has accelerated research into renewable energy sources that could replace fossil petroleum-based fuels and materials. Bioethanol production from cellulosic biomass by fermentation with baker s yeast Saccharomyces cerevisiae is one of the most studied areas in this field. The focus has been on metabolic engineering of S. cerevisiae for utilisation of the pentose sugars, in particular D-xylose that is abundant in the hemicellulose fraction of biomass. Introduction of a heterologous xylose-utilisation pathway into S. cerevisiae enables xylose fermentation, but ethanol yield and productivity do not reach the theoretical level. In the present study, transcription, proteome and metabolic flux analyses of recombinant xylose-utilising S. cerevisiae expressing the genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis and the endogenous xylulokinase were carried out to characterise the global cellular responses to metabolism of xylose. The aim of these studies was to find novel ways to engineer cells for improved xylose fermentation. The analyses were carried out from cells grown on xylose and glucose both in batch and chemostat cultures. A particularly interesting observation was that several proteins had post-translationally modified forms with different abundance in cells grown on xylose and glucose. Hexokinase 2, glucokinase and both enolase isoenzymes 1 and 2 were phosphorylated differently on the two different carbon sources studied. This suggests that phosphorylation of glycolytic enzymes may be a yet poorly understood means to modulate their activity or function. The results also showed that metabolism of xylose affected the gene expression and abundance of proteins in pathways leading to acetyl-CoA synthesis and altered the metabolic fluxes in these pathways. Additionally, the analyses showed increased expression and abundance of several other genes and proteins involved in cellular redox reactions (e.g. aldo-ketoreductase Gcy1p and 6-phosphogluconate dehydrogenase) in cells grown on xylose. Metabolic flux analysis indicated increased NADPH-generating flux through the oxidative part of the pentose phosphate pathway in cells grown on xylose. The most importantly, results indicated that xylose was not able to repress to the same extent as glucose the genes of the tricarboxylic acid and glyoxylate cycles, gluconeogenesis and some other genes involved in the metabolism of respiratory carbon sources. This suggests that xylose is not recognised as a fully fermentative carbon source by the recombinant S. cerevisiae that may be one of the major reasons for the suboptimal fermentation of xylose. The regulatory network for carbon source recognition and catabolite repression is complex and its functions are only partly known. Consequently, multiple genetic modifications and also random approaches would probably be required if these pathways were to be modified for further improvement of xylose fermentation by recombinant S. cerevisiae strains.
Resumo:
Double-stranded RNA (dsRNA) viruses encode only a single protein species that contains RNA-dependent RNA polymerase (RdRP) motifs. This protein is a central component in the life cycle of a dsRNA virus, carrying out both RNA transcription and replication. The architecture of viral RdRPs resembles that of a 'cupped right hand' with fingers, palm and thumb domains. Those applying de novo initiation have additional structural features, including a flexible C-terminal domain that constitutes the priming platform. Moreover, viral RdRPs must be able to interact with the incoming 3'-terminus of the template and position it so that a productive binary complex is formed. Bacteriophage phi6 of the Cystoviridae family is to date one of the best studied dsRNA viruses. The purified recombinant phi6 RdRP is highly active in vitro and possesses both RNA replication and transcription activities. The extensive biochemical observations and the atomic level crystal structure of the phi6 RdRP provides an excellent platform for in-depth studies of RNA replication in vitro. In this thesis, targeted structure-based mutagenesis, enzymatic assays and molecular mapping of phi6 RdRP and its RNA were used to elucidate the formation of productive RNA-polymerase binary complexes. The positively charged rim of the template tunnel was shown to have a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. This work demonstrated that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi6 RdRP can be greatly enhanced. Furthermore, proteolyzed phi6 RdRPs that possess a nick in the polypeptide chain at the hinge region, which is part of the extended loop, were better suited for catalysis at higher temperatures whilst favouring back-primed initiation. The clipped C-terminus remains associated with the main body of the polymerase and the hinge region, although structurally disordered, is involved in the control of C-terminal domain displacement. The accumulated knowhow on bacteriophage phi6 was utilized in the development of two technologies for the production of dsRNA: (i) an in vitro system that combines the T7 RNA polymerase and the phi6 RdRP to generate dsRNA molecules of practically unlimited length, and (ii) an in vivo RNA replication system based on restricted infection with phi6 polymerase complexes in bacterial cells to produce virtually unlimited amounts of dsRNA. The pools of small interfering RNAs derived from dsRNA produced by these systems were validated and shown to efficiently decrease the expression of both exogenous and endogenous targets.
Resumo:
Useiden lääkkeiden yhtäaikainen käyttö on nykyään hyvin yleistä, mikä lisää lääkeaineiden haitallisten yhteisvaikutusten riskiä. Lääkeaineiden poistumisessa elimistöstä ovat tärkeässä osassa niitä hajottavat (metaboloivat) maksan sytokromi P450 (CYP) entsyymit. Vasta aivan viime vuosina on havaittu, että CYP2C8-entsyymillä voi olla tärkeä merkitys mm. lääkeaineyhteisvaikutuksissa. Eräät lääkeaineet voivat estää (inhiboida) CYP2C8-entsyymin kautta tapahtuvaa metaboliaa. Tässä työssä selvitettiin CYP2C8-entsyymiä estävien lääkkeiden vaikutusta sellaisten lääkeaineiden pitoisuuksiin, joiden aikaisemman tiedon perusteella arveltiin metaboloituvan CYP2C8-välitteisesti. Näiden lääkeaineiden metaboliaa tutkittiin myös koeputkiolosuhteissa (in vitro -menetelmillä). Lisäksi CYP2C8-entsyymiä estävän lipidilääke gemfibrotsiilin yhteisvaikutusmekanismia tutkittiin selvittämällä interaktion säilymistä koehenkilöillä gemfibrotsiilin annostelun lopettamisen jälkeen. Yhteisvaikutuksia tutkittiin terveillä vapaaehtoisilla koehenkilöillä käyttäen vaihtovuoroista koeasetelmaa. Koehenkilöille annettiin CYP2C8-entsyymiä estävää lääkitystä muutaman päivän ajan ja tämän jälkeen kerta-annos tutkimuslääkettä. Koehenkilöiltä otettiin useita verinäytteitä, joista määritettiin lääkepitoisuudet nestekromatografisilla tai massaspektrometrisillä menetelmillä. Gemfibrotsiili nosti ripulilääke loperamidin pitoisuudet keskimäärin kaksinkertaiseksi. Gemfibrotsiili lisäsi, mutta vain hieman, kipulääke ibuprofeenin pitoisuuksia, eikä sillä ollut mitään vaikutusta unilääke tsopiklonin pitoisuuksiin toisin kuin aiemman kirjallisuuden perusteella oli odotettavissa. Toinen CYP2C8-estäjä, mikrobilääke trimetopriimi, nosti diabeteslääke pioglitatsonin pitoisuuksia keskimäärin noin 40 %. Gemfibrotsiili nosti diabeteslääke repaglinidin pitoisuudet 7-kertaiseksi ja tämä yhteisvaikutus säilyi lähes yhtä voimakkaana vielä 12 tunnin päähän viimeisestä gemfibrotsiiliannoksesta. Tehdyt havainnot ovat käytännön lääkehoidon kannalta merkittäviä ja ne selvittävät CYP2C8-entsyymin merkitystä useiden lääkkeiden metaboliassa. Gemfibrotsiilin tai muiden CYP2C8-entsyymiä estävien lääkkeiden yhteiskäyttö loperamidin kanssa voi lisätä loperamidin tehoa tai haittavaikutuksia. Toisaalta CYP2C8-entsyymin osuus tsopiklonin ja ibuprofeenin metaboliassa näyttää olevan pieni. Trimetopriimi nosti kohtalaisesti pioglitatsonin pitoisuuksia, ja kyseisten lääkkeiden yhteiskäyttö voi lisätä pioglitatsonin annosriippuvaisia haittavaikutuksia. Gemfibrotsiili-repaglinidi-yhteisvaikutuksen päämekanismi in vivo näyttää olevan CYP2C8-entsyymin palautumaton esto. Tämän vuoksi gemfibrotsiilin estovaikutus ja yhteisvaikutusriski säilyvät pitkään gemfibrotsiilin annostelun lopettamisen jälkeen, mikä tulee ottaa huomioon käytettäessä sitä CYP2C8-välitteisesti metaboloituvien lääkkeiden kanssa.
Resumo:
Deoxyhypusine synthase, an NAD(+)-dependent enzyme, catalyzes the first step in the post-translational synthesis of an unusual amino acid, hypusine (N-epsilon-(4-amino-2-hydroxybutyl)lysine), in the eukaryotic initiation factor 5A precursor protein. Two putative deoxyhypusine synthase (DHS) sequences have been identified in the Leishmania donovani genome, which are present on chromosomes 20: DHSL20 (DHS-like gene from chromosome 20) and DHS34 (DHS from chromosome 34). Although both sequences exhibit an overall conservation of key residues, DHSL20 protein lacks a critical lysine residue, and the recombinant protein showed no DHS activity in vitro. However, DHS34 contains the critical lysine residue, and the recombinant DHS34 effectively catalyzed deoxyhypusine synthesis. Furthermore, in vivo labeling confirmed that hypusination of eukaryotic initiation factor 5A occurs in intact Leishmania parasites. Interestingly, the DHS34 is much longer, with 601 amino acids, compared with the human DHS enzyme (369 amino acids) and contains several unique insertions. To study the physiological role of DHS34 in Leishmania, gene deletion mutations were attempted via targeted gene replacement. However, chromosomal null mutants of DHS34 could only be obtained in the presence of a DHS34-containing episome. The present data provide evidence that DHS34 is essential for L. donovani and that structural differences in the human and leishmanial DHS enzyme may be exploited for designing selective inhibitors against the parasite.
Resumo:
We examined whether C-terminal residues of soluble recombinant FtsZ of Mycobacterium tuberculosis (MtFtsZ) have any role in MtFtsZ polymerization in vitro. MtFtsZ-delta C1, which lacks C-terminal extreme Arg residue (underlined in the C-terminal extreme stretch of 13 residues, DDDDVDVPPFMRR), but retaining the penultimate Arg residue (DDDDVDVPPFMR), polymerizes like full-length MtFtsZ in vitro. However, MtFtsZ-delta C2 that lacks both the Arg residues at the C-terminus (DDDDVDVPPFM), neither polymerizes at pH 6.5 nor forms even single- or double-stranded filaments at pH 7.7 in the presence of 10 mM CaCl2. Neither replacement of the penultimate Arg residue, in the C-terminal Arg deletion mutant DDDDVDVPPFMR, with Lys or His or Ala or Asp (DDDDVDVPPFMK/H/A/D) enabled polymerization. Although MtFtsZ-delta C2 showed secondary and tertiary structural changes, which might have affected polymerization, GTPase activity of MtFtsZ-delta C2 was comparable to that of MtFtsZ. These data suggest that MtFtsZ requires an Arg residue as the extreme C-terminal residue for polymerization in vitro. The polypeptide segment containing C-terminal 67 residues, whose coordinates were absent from MtFtsZ crystal structure, was modeled on tubulin and MtFtsZ dimers. Possibilities for the influence of the C-terminal Arg residues on the stability of the dimer and thereby on MtFtsZ polymerization have been discussed.
Resumo:
Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical. trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model.
Resumo:
Pioglitazone is a thiazolidinedione compound used in the treatment of type 2 diabetes. It has been reported to be metabolised by multiple cytochrome P450 (CYP) enzymes, including CYP2C8, CYP2C9 and CYP3A4 in vitro. The aims of this work were to identify the CYP enzymes mainly responsible for the elimination of pioglitazone in order to evaluate its potential for in vivo drug interactions, and to investigate the effects of CYP2C8- and CYP3A4-inhibiting drugs (gemfibrozil, montelukast, zafirlukast and itraconazole) on the pharmacokinetics of pioglitazone in healthy volunteers. In addition, the effect of induction of CYP enzymes on the pharmacokinetics of pioglitazone in healthy volunteers was investigated, with rifampicin as a model inducer. Finally, the effect of pioglitazone on CYP2C8 and CYP3A enzyme activity was examined in healthy volunteers using repaglinide as a model substrate. Study I was conducted in vitro using pooled human liver microsomes (HLM) and human recombinant CYP isoforms. Studies II to V were randomised, placebo-controlled cross-over studies with 2-4 phases each. A total of 10-12 healthy volunteers participated in each study. Pretreatment with clinically relevant doses with the inhibitor or inducer was followed by a single dose of pioglitazone or repaglinide, whereafter blood and urine samples were collected for the determination of drug concentrations. In vitro, the elimination of pioglitazone (1 µM) by HLM was markedly inhibited, in particular by CYP2C8 inhibitors, but also by CYP3A4 inhibitors. Of the recombinant CYP isoforms, CYP2C8 metabolised pioglitazone markedly, and CYP3A4 also had a significant effect. All of the tested CYP2C8 inhibitors (montelukast, zafirlukast, trimethoprim and gemfibrozil) concentration-dependently inhibited pioglitazone metabolism in HLM. In humans, gemfibrozil raised the area under the plasma concentration-time curve (AUC) of pioglitazone 3.2-fold (P < 0.001) and prolonged its elimination half-life (t½) from 8.3 to 22.7 hours (P < 0.001), but had no significant effect on its peak concentration (Cmax) compared with placebo. Gemfibrozil also increased the excretion of pioglitazone into urine and reduced the ratios of the active metabolites M-IV and M-III to pioglitazone in plasma and urine. Itraconazole had no significant effect on the pharmacokinetics of pioglitazone and did not alter the effect of gemfibrozil on pioglitazone pharmacokinetics. Rifampicin decreased the AUC of pioglitazone by 54% (P < 0.001) and shortened its dominant t½ from 4.9 to 2.3 hours (P < 0.001). No significant effect on Cmax was observed. Rifampicin also decreased the AUC of the metabolites M-IV and M-III, shortened their t½ and increased the ratios of the metabolite to pioglitazone in plasma and urine. Montelukast and zafirlukast did not affect the pharmacokinetics of pioglitazone. The pharmacokinetics of repaglinide remained unaffected by pioglitazone. These studies demonstrate the principal role of CYP2C8 in the metabolism of pioglitazone in humans. Gemfibrozil, an inhibitor of CYP2C8, increases and rifampicin, an inducer of CYP2C8 and other CYP enzymes, decreases the plasma concentrations of pioglitazone, which can necessitate blood glucose monitoring and adjustment of pioglitazone dosage. Montelukast and zafirlukast had no effects on the pharmacokinetics of pioglitazone, indicating that their inhibitory effect on CYP2C8 is negligible in vivo. Pioglitazone did not increase the plasma concentrations of repaglinide, indicating that its inhibitory effect on CYP2C8 and CYP3A4 is very weak in vivo.
Resumo:
Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.
Resumo:
We have purified phage lambda beta protein produced by a recombinant plasmid carrying bet gene and confirm that it forms a complex with a protein of relative molecular mass 70 kDa. Therefore, beta protein, a component of general genetic recombination, is associated with two functionally diverse complexes; one containing exonuclease and the other 70 kDa protein. Using a number of independent methods, we show that 70 kDa protein is the ribosomal S1 protein of E. coli. Further, the association of 70 kDa protein with beta protein is biologically significant, as the former inhibits joining of the terminal ends of lambda chromosome and renaturation of complementary single stranded DNA promoted by the latter. More importantly, these findings initiate an understanding of an important mode of host- virus interaction in general with specific implication(s) in homologous genetic recombination.
Resumo:
Introduction Repaglinide is a short-acting drug, used to reduce postprandial hyperglycaemia in type 2 diabetic patients. Repaglinide is extensively metabolised, and its oral bioavailability is about 60%; its metabolites are mainly excreted into bile. In previous studies, the cytochrome P450 (CYP) 3A4 inhibitors itraconazole and clarithromycin have moderately increased the area under the concentration-time curve (AUC) of repaglinide. Gemfibrozil, a CYP2C8 inhibitor, has greatly increased repaglinide AUC, enhancing and prolonging its blood glucose-lowering effect. Rifampicin has decreased the AUC and effects of repaglinide. Aims The aims of this work were to investigate the contribution of CYP2C8 and CYP3A4 to the metabolism of repaglinide, and to study other potential drug interactions affecting the pharmacokinetics of repaglinide, and the mechanisms of observed interactions. Methods The metabolism of repaglinide was studied in vitro using recombinant human CYP enzymes and pooled human liver microsomes (HLM). The effect of trimethoprim, cyclosporine, bezafibrate, fenofibrate, gemfibrozil, and rifampicin on the metabolism of repaglinide, and the effect of fibrates and rifampicin on the activity of CYP2C8 and CYP3A4 were investigated in vitro. Randomised, placebo-controlled cross-over studies were carried out in healthy human volunteers to investigate the effect of bezafibrate, fenofibrate, trimethoprim, cyclosporine, telithromycin, montelukast and pioglitazone on the pharmacokinetics and pharmacodynamics of repaglinide. Pretreatment with clinically relevant doses of the study drug or placebo was followed by a single dose of repaglinide, after which blood and urine samples were collected to determine pharmacokinetic and pharmacodynamic parameters. Results In vitro, the contribution of CYP2C8 was similar to that of CYP3A4 in the metabolism of repaglinide (< 2 μM). Bezafibrate, fenofibrate, gemfibrozil, and rifampicin moderately inhibited CYP2C8 and repaglinide metabolism, but only rifampicin inhibited CYP3A4 in vitro. Bezafibrate, fenofibrate, montelukast, and pioglitazone had no effect on the pharmacokinetics and pharmacodynamics of repaglinide in vivo. The CYP2C8 inhibitor trimethoprim inhibited repaglinide metabolism by HLM in vitro and increased repaglinide AUC by 61% in vivo (P < .001). The CYP3A4 inhibitor telithromycin increased repaglinide AUC 1.8-fold (P < .001) and enhanced its blood glucose-lowering effect in vivo. Cyclosporine inhibited the CYP3A4-mediated (but not CYP2C8-mediated) metabolism of repaglinide in vitro and increased repaglinide AUC 2.4-fold in vivo (P < .001). The effect of cyclosporine on repaglinide AUC in vivo correlated with the SLCO1B1 (encoding organic anion transporting polypeptide 1, OATP1B1) genotype. Conclusions The relative contributions of CYP2C8 and CYP3A4 to the metabolism of repaglinide are similar in vitro, when therapeutic repaglinide concentrations are used. In vivo, repaglinide AUC was considerably increased by inhibition of both CYP2C8 (by trimethoprim) and CYP3A4 (by telithromycin). Cyclosporine raised repaglinide AUC even higher, probably by inhibiting the CYP3A4-mediated biotransformation and OATP1B1-mediated hepatic uptake of repaglinide. Bezafibrate, fenofibrate, montelukast, and pioglitazone had no effect on the pharmacokinetics of repaglinide, suggesting that they do not significantly inhibit CYP2C8 or CYP3A4 in vivo. Coadministration of drugs that inhibit CYP2C8, CYP3A4 or OATP1B1 may increase the plasma concentrations and blood glucose-lowering effect of repaglinide, requiring closer monitoring of blood glucose concentrations to avoid hypoglycaemia, and adjustment of repaglinide dosage as necessary.
Resumo:
Cardiac surgery involving cardiopulmonary bypass (CPB) induces activation of inflammation and coagulation systems and is associated with ischemia-reperfusion injury (I/R injury)in various organs including the myocardium, lungs, and intestine. I/R injury is manifested as organ dysfunction. Thrombin, the key enzyme of coagulation , plays a cenral role also in inflammation and contributes to regulation of apoptosis as well. The general aim of this thesis was to evaluate the potential of thrombin inhibition in reducing the adverse effects of I/R injury in myocardium, lungs, and intestine associated with the use of CPB and cardiac surgery. Forty five pigs were used for the studies. Two randomized blinded studies were performed. Animals underwent 75 min of normothermic CPB, 60 min of aortic clamping, and 120 min of reperfusion period. Twenty animals received iv. recombinant hirudin, a selective and effective inbitor of thrombin, or placebo. In a similar setting, twenty animals received an iv-bolus (250 IU/kg) of antithrombin (AT) or placebo. An additional group of 5 animals received 500 IU/kg in an open label setting to test dose response. Generation of thrombin (TAT), coagulation status (ACT), and hemodynamics were measured. Intramucosal pH and pCO2 were measured from the luminal surface of ileum using tonometry simultaneusly with arterial gas analysis. In addition, myocardial, lung, and intestinal biopsies were taken to quantitate leukocyte infiltration (MPO), for histological evaluation, and detection of apoptosis (TUNEL, caspase 3). In conclusion, our data suggest that r-hirudin may be an effective inhibitor of reperfusion induced thrombin generation in addition to being a direct inhibitor of preformed thrombin. Overall, the results suggest that inhibition of thrombin, beyond what is needed for efficient anticoagulation by heparin, has beneficial effects on myocardial I/R injury and hemodynamics during cardiac surgery and CPB. We showed that infusion of the thrombin inhibitor r-hirudin during reperfusion was associated with attenuated post ischemia left ventricular dysfunction and decreased systemic vascular resistance. Consequently microvascular flow was improved during ischemia-reperfusion injury. Improved recovery of myocardium during the post-ischemic reperfusion period was associated with significantly less cardiomyocyte apoptosis and with a trend in anti-inflammatory effects. Thus, inhibition of reperfusion induced thrombin may offer beneficial effects by mechanisms other than direct anticoagulant effects. AT, in doses with a significant anticoagulant effect, did not alleviate myocardial I/R injury in terms of myocardial recovery, histological inflammatory changes or post-ischemic troponin T release. Instead, AT attenuated reperfusion induced increase in pulmonary pressure after CPB. Taken the clinical significance of postoperative pulmonary hemodynamics in patients undergoing cardiopulmonary bypass, the potential positive regulatory role of AT and clinical implications needs to be studied further. Inflammatory response in the gut wall proved to be poorly associated with perturbed mucosal perfusion and the animals with the least neutrophil tissue sequestration and I/R related histological alterations tended to have the most progressive mucosal hypoperfusion. Thus, mechanisms of low-flow reperfusion injury during CPB can differ from the mechanisms seen in total ischemia reperfusion injury.
Resumo:
Background: Mulibrey nanism (MUL; Muscle-liver-brain-eye nanism; OMIM 253250) is an autosomal recessive growth disorder more prevalent in Finland than elsewhere in the world. Clinical characteristics include severe prenatal onset growth restriction, cardiopathy, multiple organ manifestations but no major neurological handicap. MUL is caused by mutations in the TRIM37 gene on chromosome 17q22-23, encoding a peroxisomal protein TRIM37 with ubiquitin E3-ligase activity. Nineteen different mutations have been detected, four of them present in the Finnish patients. Objective: This study aimed to characterize clinical and histopathological features of MUL in the national cohort of Finnish patients. Patients and methods: A total of 92 Finnish patients (age 0.7 to 77 years) participated in the clinical follow-up study. Patients hospital records and growth charts were reviewed. Physical, radiographic and laboratory examinations were performed according to a clinical protocol. Thirty patients (18 females) were treated with recombinant human GH for a median period of 5.7 years. Biopsies and autopsy samples were used for the histopathological and immunohistochemical analyses. Results: MUL patients were born small for gestational age (SGA) with immature craniofacial features after prenatal-onset growth restriction. They experienced a continuous deceleration in both height SDS and weight-for-height (WFH) postnatally. In infancy feeding difficulties and frequent pneumonias were common problems. At the time of diagnosis (median age 2.1 years) characteristic craniofacial, radiological and ocular features were the most constant findings. MUL patients showed a dramatic change in glucose metabolism with increasing age. While the children had low fasting glucose and insulin levels, 90% of the adults were insulin resistant, half had type 2 diabetes and an additional 42% showed impaired glucose tolerance (IGT). Seventy percent fulfilled the National Cholesterol Education Program (NCEP) Adult Treatment Panel III criteria for metabolic syndrome as adults. GH therapy improved pre-pubertal growth but had only minor impact on adult height (+5 cm). Interestingly, treated subjects were slimmer and had less frequent metabolic concerns as young adults. MUL patients displayed histologically a disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours present in several internal organs. A total of 232 tumorous lesions were detected in our patient cohort. The majority of the tumours showed strong expression of endothelial cell marker CD34 as well as α-smooth muscle actin (α-SMA). Fifteen of the tumours were malignant and seven of them (five Wilms tumours) occurred in the kidney. Conclusions: MUL patients present a distinct postnatal growth pattern. Short-term response of GH treatment is substantial but the long-term impact remains modest. Although MUL patients form a distinct clinical and diagnostic entity, their clinical findings vary considerably from infancy to adulthood. While failure to thrive dominates early life, MUL adults develop metabolic syndrome and have a tendency for malignancies and vascular lesions in several organs. This speaks for a central role of TRIM37 in regulation of key cellular functions, such as proliferation, migration, angiogenesis and insulin signalling.
Resumo:
Technological development of fast multi-sectional, helical computed tomography (CT) scanners has allowed computed tomography perfusion (CTp) and angiography (CTA) in evaluating acute ischemic stroke. This study focuses on new multidetector computed tomography techniques, namely whole-brain and first-pass CT perfusion plus CTA of carotid arteries. Whole-brain CTp data is acquired during slow infusion of contrast material to achieve constant contrast concentration in the cerebral vasculature. From these data quantitative maps are constructed of perfused cerebral blood volume (pCBV). The probability curve of cerebral infarction as a function of normalized pCBV was determined in patients with acute ischemic stroke. Normalized pCBV, expressed as a percentage of contralateral normal brain pCBV, was determined in the infarction core and in regions just inside and outside the boundary between infarcted and noninfarcted brain. Corresponding probabilities of infarction were 0.99, 0.96, and 0.11, R² was 0.73, and differences in perfusion between core and inner and outer bands were highly significant. Thus a probability of infarction curve can help predict the likelihood of infarction as a function of percentage normalized pCBV. First-pass CT perfusion is based on continuous cine imaging over a selected brain area during a bolus injection of contrast. During its first passage, contrast material compartmentalizes in the intravascular space, resulting in transient tissue enhancement. Functional maps such as cerebral blood flow (CBF), and volume (CBV), and mean transit time (MTT) are then constructed. We compared the effects of three different iodine concentrations (300, 350, or 400 mg/mL) on peak enhancement of normal brain tissue and artery and vein, stratified by region-of-interest (ROI) location, in 102 patients within 3 hours of stroke onset. A monotonic increasing peak opacification was evident at all ROI locations, suggesting that CTp evaluation of patients with acute stroke is best performed with the highest available concentration of contrast agent. In another study we investigated whether lesion volumes on CBV, CBF, and MTT maps within 3 hours of stroke onset predict final infarct volume, and whether all these parameters are needed for triage to intravenous recombinant tissue plasminogen activator (IV-rtPA). The effect of IV-rtPA on the affected brain by measuring salvaged tissue volume in patients receiving IV-rtPA and in controls was investigated also. CBV lesion volume did not necessarily represent dead tissue. MTT lesion volume alone can serve to identify the upper size limit of the abnormally perfused brain, and those with IV-rtPA salvaged more brain than did controls. Carotid CTA was compared with carotid DSA in grading of stenosis in patients with stroke symptoms. In CTA, the grade of stenosis was determined by means of axial source and maximum intensity projection (MIP) images as well as a semiautomatic vessel analysis. CTA provides an adequate, less invasive alternative to conventional DSA, although tending to underestimate clinically relevant grades of stenosis.
Resumo:
Background: The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme. Methodology and Results: To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF) of similar to 1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size similar to 46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids-aspartate-332, aspartate-361, and tyrosine-323-by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity. Conclusion: To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.
Resumo:
Rinderpest virus (RPV) large (L) protein is an integral part of the ribonucleoprotein (RNP) complex of the virus that is responsible for transcription and replication of the genome. Previously, we have shown that recombinant L protein coexpressed along with P protein (as the L-P complex) catalyses the synthesis of all viral mRNAs in vitro and the abundance of mRNAs follows a gradient of polarity, similar to the occurrence in vivo. In the present work, we demonstrate that the viral mRNAs synthesized in vitro by the recombinant L or purified RNP are capped and methylated at the N-7 guanine position. RNP from the purified virions, as well as recombinant L protein, shows RNA triphosphatase (RTPase) and guanylyl transferase (GT) activities. L protein present in the RNP complex catalyses the removal of gamma-phosphate from triphosphate-ended 25 nt RNA generated in vitro representing the viral N-terminal mRNA 5' sequence. The L protein forms a covalent enzyme-guanylate intermediate with the GMP moiety of GTP, whose formation is inhibited by the addition of pyrophosphate; thus, it exhibits characteristics of cellular GTs. The covalent bond between the enzyme and nucleotide is acid labile and alkali stable, indicating the presence of phosphoamide linkage. The C-terminal region (aa 1717-2183) of RPV L protein alone exhibits the first step of GT activity needed to form a covalent complex with GMP, though it lacks the ability to transfer GMP to substrate RNA. Here, we describe the biochemical characterization of the newly found RTPase/GT activity of L protein.