861 resultados para polymer films, conducting, sensing application
Resumo:
Tethered deuterated polystyrene-block-polymethyl methacrylate films have been examined by X-ray scattering both in their native state and following treatment with ruthenium tetroxide. The use of the stain, while increasing the thickness of the films, does not significantly alter the lateral structure or periodicity of the films and provides contrast between the two blocks. Both the periodicity of the films and the structure normal to the surface have been identified following staining. Experiments were also performed on films treated by a solvent exchange process, and the effects of staining on these films are discussed.
Resumo:
Water-soluble polymers are often capable of forming interpolymer complexes in solutions and at interfaces, which offers an excellent opportunity for surface modification. The complex formation may be driven by H-bonding between poly(carboxylic acids) and non-ionic polymers or by electrostatic attraction between oppositely-charged polyelectrolytes. In the present communication the following applications of interpolymer complexation in coating technologies will be considered: (1) Complexation between poly(acrylic acid) and non-ionic polymers via H-bonding was used to coat glass surfaces. It was realised using layer-by-layer deposition of IPC on glass surfaces with subsequent cross-linking of dry multilayers by thermal treatment. Depending on the glass surface functionality this complexation resulted in detachable and non-detachable hydrogel films; (2) Electrostatic layer-by-layer self-assembly between glycol chitosan and bovine serum albumin (BSA) was used to coat magnetic nanoparticles. It was demonstrated that the native structure of BSA remains unaffected by the self-assembling process.
Resumo:
An atomic force microscopy investigation was carried out on various thick (30–120 nm) polymethyl methacrylate-bpolystyrene and poly(2-(dimethyl amino)ethyl methacrylate)-b-polystyrene films prepared via a grafting-from method. The structure of the films was examined with both topographic and phase imaging. Several different morphologies were observed including a perforated lamellar phase with irregular perforations. In addition, complementary small-angle X-ray scattering and reflectometry results measurements on a non-grafted polymer are presented.
Resumo:
The phase behavior of grafted d-polystyrene-block-poly(methyl methacrylate) diblock copolymer films is examined, with particular focus on the effect of solvent and annealing time. It was observed that the films undergo a two-step transformation from an initially disordered state, through an ordered metastable state, to the final equilibrium configuration. It was also found that altering the solvent used to wash the films, or complete removal of the solvent prior to thermal annealing using supercritical CO2, could influence the structure of the films in the metastable state, though the final equilibrium state was unaffected. To aid in the understanding to these experimental results, a series of self-consistent field theory calculations were done on a model diblock copolymer brush containing solvent. Of the different models examined, those which contained a solvent selective for the grafted polymer block most accurately matched the observed experimental behavior. We hypothesize that the structure of the films in the metastable state results from solvent enrichment of the film near the film/substrate interface in the case of films washed with solvent or faster relaxation of the nongrafted block for supercritical CO2 treated (solvent free) films. The persistence of the metastable structures was attributed to the slow reorganization of the polymer chains in the absence of solvent.
Resumo:
We report the electrochemical preparation of electrically conducting films based on polypyrrole, using 10-camphorsulfonate as the dopant, which exhibit a highly anisotropic molecular organisation. This contrasts with earlier reports, in which anisotropy appeared to be restricted to films prepared using aromatic-based planar dopants. Possible growth mechanisms for these materials to account for the molecular anisotropy are discussed.
Resumo:
A series of copolymers containing differing proportions of pyrrole and N-methyl pyrrole were prepared electrochemically at various temperatures using acetonitrile as the solvent. The resultant electrical conductivity decreases universally with increasing fraction of N-methyl pyrrole. Films prepared with p-toluene sulfonate as the dopant show a marked variation in structural anisotropy as revealed by X-ray scattering with apparent copolymer content. There is a clear trend between the variation in electrical conductivity and this structural anisotropy. Different patterns of behaviour are observed for films prepared using perchlorate as the dopant and this is attributed to the role of the dopant and final structure in determining the relative reactivities of the pyrrole and N-methyl pyrrole monomers. These observations support the concept that the introduction of methyl substituents into a polypyrrole chain results in a twisted chain conformation. The structure and properties of the resultant copolymer films are particularly sensitive to the preparation conditions.
Resumo:
A two-dimensional X-ray scattering system developed around a CCD-based area detector is presented, both in terms of hardware employed and software designed and developed. An essential feature is the integration of hardware and software, detection and sample environment control which enables time-resolving in-situ wide-angle X-ray scattering measurements of global structural and orientational parameters of polymeric systems subjected to a variety of controlled external fields. The development and operation of a number of rheometers purpose-built for the application of such fields are described. Examples of the use of this system in monitoring degrees of shear-induced orientation in liquid-crystalline systems and crystallization of linear polymers subsequent to shear flow are presented.
Resumo:
A supramolecular polymer blend, formed via π-π interactions between a π-electron rich pyrenyl endcapped oligomer and a chain-folding oligomer containing pairs of π-electron poor naphthalene-diimide (NDI) units, has been reinforced with cellulose nanocrystals (CNCs) to afford a healable nanocomposite material. Nanocomposites with varying weight percentage of CNCs (from 1.25 to 20.0 wt.%) within the healable supramolecular polymeric matrix have been prepared via solvent casting followed by compression molding, and their mechanical properties and healing behavior have been evaluated. It is found that homogeneously dispersed films can be formed with CNCs at less than 10 wt.%. Above 10 wt.% CNC heterogeneous nanocomposites were obtained. All the nanocomposites formed could be re-healed upon exposure to elevated temperatures although, for the homogeneous films, it was found that the healing rate was reduced with increasing CNC content. The best combination of healing efficiency and mechanical properties was obtained with the 7.5 wt.% CNC nanocomposite which exhibited a tensile modulus enhanced by as much as a factor of 20 over the matrix material alone and could be fully re-healed at 85 °C within 30 minutes. Thus it is demonstrated that supramolecular nanocomposites can afford greatly enhanced mechanical properties relative to the unreinforced polymer, while still allowing efficient thermal healing.
Resumo:
This review describes the state-of the-art of nano-, micro- and macrogels, membranes, micro- and nanocapsules, as well as multilayered thin films exhibiting amphoteric character. The synthetic strategies and physicochemical properties of amphoteric materials are outlined in light of the stimuli-responsive behavior and their potential application in nanotechnology, biotechnology and medicine.
Resumo:
A thermoresponsive, supramolecular nanocomposite has been prepared by the addition of pyrenyl functionalized gold nanoparticles (AuNPs) to a polydiimide that contains receptor residues designed to form defined complexes with pyrene. The novel pyrenyl-functionalized AuNPs (P-AuNPs) were characterized by transmission electron microscopy, with surface functionalization confirmed by infrared and UV–visible spectroscopic analyses. Mixing solutions of the P-AuNPs and a π-electron-deficient polydiimide resulted in the formation of electronically complementary, chain-folded and π–π-stacked complexes, so affording a new supramolecular nanocomposite network which precipitated from solution. The P-AuNPs bind to the polydiimide via π–π stacking interactions to create supramolecular cross-links. UV–visible spectroscopic analysis confirmed the thermally reversible nature of the complexation process, and transmission electron microscopy (TEM), infrared spectroscopy (IR), and differential scanning calorimetry (DSC) were used to characterize the supramolecular-nanocomposite material. The supramolecular polymer network is insoluble at room temperature, yet may be dissolved at temperatures above 60 °C. The thermal reversibility of this system is maintained over five heat/cool cycles without diminishment of the network characteristics. In contrast to the individual components, the nanocomposite formed self-supporting films, demonstrating the benefit of the supramolecular network in terms of mechanical properties. Control experiments probing the interactions between a model diimide compound that can also form a π-stacked complex with the π-electron rich pyrene units on P-AuNPs showed that, while complexation was readily apparent, precipitation did not occur because a supramolecular cross-linked network system could not be formed with this system.
Resumo:
The last decade has seen successful clinical application of polymer–protein conjugates (e.g. Oncaspar, Neulasta) and promising results in clinical trials with polymer–anticancer drug conjugates. This, together with the realisation that nanomedicines may play an important future role in cancer diagnosis and treatment, has increased interest in this emerging field. More than 10 anticancer conjugates have now entered clinical development. Phase I/II clinical trials involving N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (PK1; FCE28068) showed a four- to fivefold reduction in anthracycline-related toxicity, and, despite cumulative doses up to 1680 mg/m2 (doxorubicin equivalent), no cardiotoxicity was observed. Antitumour activity in chemotherapy-resistant/refractory patients (including breast cancer) was also seen at doxorubicin doses of 80–320 mg/m2, consistent with tumour targeting by the enhanced permeability (EPR) effect. Hints, preclinical and clinical, that polymer anthracycline conjugation can bypass multidrug resistance (MDR) reinforce our hope that polymer drugs will prove useful in improving treatment of endocrine-related cancers. These promising early clinical results open the possibility of using the water-soluble polymers as platforms for delivery of a cocktail of pendant drugs. In particular, we have recently described the first conjugates to combine endocrine therapy and chemotherapy. Their markedly enhanced in vitro activity encourages further development of such novel, polymer-based combination therapies. This review briefly describes the current status of polymer therapeutics as anticancer agents, and discusses the opportunities for design of second-generation, polymer-based combination therapy, including the cocktail of agents that will be needed to treat resistant metastatic cancer.
Resumo:
Novel oxazoline-based comb-polymers possessing linoleyl or oleic side chains have been synthesized and used to produce low viscosity coatings. Inclusion of the polymers in model paint formulations results in coatings that exhibit faster drying times than commercially available alkyd resin formulations. The comb polymers were produced from diol substituted oxazoline monomers that were synthesized through a scalable, solvent free protocol and purified by simple recrystallisation. Co-polymerisation of the oxazolines with adipic acid at 160 °C in the bulk resulted in the targeted polyester comb type polymers. The polymers were soluble in a range of organic solvents and compatible with commercial alkyd resins. Model paint formulations containing up to 40 wt% of the linoleyl-based comb polymers exhibited a dramatic reduction in viscosity (from 35 to 13 Poise at 25 °C) with increasing quantities of polymer added. Dynamic mechanical analysis (DMA) studies revealed that the drying rate of the model paint formulations containing the comb polymers was enhanced when compared with that of commercial alkyd resins.
Resumo:
Novel acid-terminated hyperbranched polymers (HBPs) containing adipic acid and oxazoline monomers derived from oleic and linoleic acid have been synthesized via a bulk polymerization procedure. Branching was achieved as a consequence of an acid-catalyzed opening of the oxazoline ring to produce a trifunctional monomer in situ which delivered branching levels of >45% as determined by 1H and 13C NMR spectroscopy. The HBPs were soluble in common solvents, such as CHCl3, acetone, tetrahydrofuran, dimethylformamide, and dimethyl sulfoxide and were further functionalized by addition of citronellol to afford white-spirit soluble materials that could be used in coating formulations. During end group modification, a reduction in branching levels of the HBPs (down to 12–24%) was observed, predominantly on account of oxazoline ring reformation and trans-esterification processes under the reaction conditions used. In comparison to commercial alkyd resin paint coatings, formulations of the citronellol-functionalized hyperbranched materials blended with a commercial alkyd resin exhibited dramatic decreases of the blend viscosity when the HBP content was increased. The curing characteristics of the HBP/alkyd blend formulations were studied by dynamic mechanical analysis which revealed that the new coatings cured more quickly and produced tougher materials than otherwise identical coatings prepared from only the commercial alkyd resins.
Resumo:
The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.
Resumo:
The authors identified several specific problems with the measurement of achievement goals in the current literature and illustrated these problems, focusing primarily on A. J. Elliot and H. A. McGregor's (2001) Achievement Goal Questionnaire (AGQ). They attended to these problems by creating the AGQ-Revised and conducting a study that examined the measure's structural validity and predictive utility with 229 (76 male, 150 female, 3 unspecified) undergraduates. The hypothesized factor and dimensional structures of the measure were confirmed and shown to be superior to a host of alternatives. The predictions were nearly uniformly supported with regard to both the antecedents (need for achievement and fear of failure) and consequences (intrinsic motivation and exam performance) of the 4 achievement goals. In discussing their work, the authors highlight the importance and value of additional precision in the area of achievement goal measurement. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)