958 resultados para persistent navigation and mapping
Resumo:
Includes indexes.
Resumo:
Description based on: 1933.
Resumo:
2. Land-surveying. Gauging. Projectiles Spherical trigonometry. Astronomical problems. Navigation, and other subjects.
Resumo:
In 2014 the United States Forest Service closed the Gold Basin Campground of western Washington in an effort to protect the public from unstable hillslopes directly adjacent to the campground. The Gold Basin Landslide Complex (GBLC) is actively eroding via block fall, dry ravel, and debris flows, which contribute sediment into the South Fork of the Stillaguamish River. This sediment diminishes the salmonid population within the South Fork of the Stillaguamish River by reducing habitable spawning grounds, which is a big concern to the Stillaguamish Tribe of Indians. In this investigation, I quantified patterns of degradation and total volume of sediment erosion from the middle lobe of the GBLC over the period of July 2015 through January 2016 using terrestrial (ground-based) LiDAR (TLS). I characterized site specific stratigraphy and geomorphic processes, and laid the groundwork for future, long-term monitoring of this site. Results of this investigation determined that ~ 4,800m3 of sediment was eroded from the middle lobe of the GBLC during the 6 month study period (July 2015 – January 2016). This erosion likely occurred from debris flows, raveling of poorly sorted sand and gravel deposits and block failures of high plasticity silts and clays, and/or other mass wasting mechanisms. The generalized stratigraphic sequence in the GBLC consists of alternating massive beds of sand and gravel with silts and clays. The low permeability of these silts and clays provide a perfect venue for groundwater to percolate, as I observed during field investigations, which likely contributes to the active instability of the hillslopes. Continued monitoring and mapping of this complex will lead to viable information that could help both the United States Forest Service and the Stillaguamish Tribe.
Resumo:
Coal is widely used in PR China. Unfortunately, coal from some areas in Guizhou Province contains elevated levels of arsenic. This has caused arsenicosis in individuals who use arsenic-contaminated coal for the purposes of heating, cooking and drying of food in poorly ventilated dwellings. The population at risk has been estimated to be approximately 200,000 people. Clinical symptoms of arsenicosis may include changes of skin pigmentation, hyperkeratosis of hand and feet, skin cancers, liver damage, persistent cough and chronic bronchitis. We analyzed the porphyrin excretion profile using a HPLC method in urine samples collected from 113 villagers who lived in Xing Ren district, a coal-bome arsenicosis endemic area and from 30 villagers from Xing Yi where arsenicosis is not prevalent. Urinary porphyrins were higher in the arsenic exposed group than those in the control group. The correlation between urinary arsenic and porphyrin concentrations demonstrated the effect of arsenic on heme biosynthesis resulting in increased porphyrin excretion. Both uroporphyrin and coproporphyrin III showed significant increases in the excretion profile of the younger age (< 20 years) arsenic-exposed group, suggesting that porphyrins could be used as early warning biomarkers of chronic arsenic exposure in humans. Greater increases of urinary arsenic and porphyrins in women, children and older age groups who spend much of their time indoors suggest that they might be at a higher risk. Whether elevated porphyrins could predict adverse health effects associated with both cancer and non-cancer end-points in chronically arsenic-exposed populations need further investigation. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This paper shows initial results in deploying the biologically inspired Simultaneous Localisation and Mapping system, RatSLAM, in an outdoor environment. RatSLAM has been widely tested in indoor environments on the task of producing topologically coherent maps based on a fusion of odometric and visual information. This paper details the changes required to deploy RatSLAM on a small tractor equipped with odometry and an omnidirectional camera. The principal changes relate to the vision system, with others required for RatSLAM to use omnidirectional visual data. The initial results from mapping around a 500 m loop are promising, with many improvements still to be made.
Resumo:
Graphic depiction is an established method for academics to present concepts about theories of innovation. These expressions have been adopted by policy-makers, the media and businesses. However, there has been little research on the extent of their usage or effectiveness ex-academia. In addition, innovation theorists have ignored this area of study, despite the communication of information about innovation being acknowledged as a major determinant of success for corporate enterprise. The thesis explores some major themes in the theories of innovation and compares how graphics are used to represent them. The thesis examines the contribution of visual sociology and graphic theory to an investigation of a sample of graphics. The methodological focus is a modified content analysis. The following expressions are explored: check lists, matrices, maps and mapping in the management of innovation; models, flow charts, organisational charts and networks in the innovation process; and curves and cycles in the representation of performance and progress. The main conclusion is that academia is leading the way in usage as well as novelty. The graphic message is switching from prescription to description. The computerisation of graphics has created a major role for the information designer. It is recommended that use of the graphic representation of innovation should be increased in all domains, though it is conceded that its content and execution need to improve, too. Education of graphic 'producers', 'intermediaries' and 'consumers' will play a part in this, as will greater exploration of diversity, novelty and convention. Work has begun to tackle this and suggestions for future research are made.
Resumo:
Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.
Resumo:
Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.
Resumo:
The focus of this thesis is the extension of topographic visualisation mappings to allow for the incorporation of uncertainty. Few visualisation algorithms in the literature are capable of mapping uncertain data with fewer able to represent observation uncertainties in visualisations. As such, modifications are made to NeuroScale, Locally Linear Embedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation and visualisation spaces. The proposed mappings are then called Normally-distributed NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Probabilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM). These algorithms generate a probabilistic visualisation space with each latent visualised point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF network. Two types of uncertainty are then characterised dependent on the data and mapping procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas, mapping uncertainty is defined by the Fisher Information of a visualised distribution. This indicates how well the data has been interpolated, offering a level of ‘surprise’ for each observation. These new probabilistic mappings are tested on three datasets of vectorial observations and three datasets of real world time series observations for anomaly detection. In order to visualise the time series data, a method for analysing observed signals and noise distributions, Residual Modelling, is introduced. The performance of the new algorithms on the tested datasets is compared qualitatively with the latent space generated by the Gaussian Process Latent Variable Model (GPLVM). A quantitative comparison using existing evaluation measures from the literature allows performance of each mapping function to be compared. Finally, the mapping uncertainty measure is combined with NeuroScale to build a deep learning classifier, the Cascading RBF. This new structure is tested on the MNist dataset achieving world record performance whilst avoiding the flaws seen in other Deep Learning Machines.
Resumo:
This work presents a proposal to build a Mathematics Teaching Laboratory (MTL) whose main theme is the study, construction and use of instruments for navigation and location of mathematical content in an interdisciplinary way approach, and develop a notebook of activities focused on navigational instruments. For this it was necessary a literature review to understand the different conceptions of MTL and its pedagogical implications. The methodology used was literature research, construction and handling of instruments, and pedagogical experimentation. Lorenzato (2006) highlights the importance of an environment and suitable for a professional who can do a good job instruments. The implementation of an LEM can find some obstacles. The lack of support from other teachers or the management, the lack of a suitable place to store the materials produced, the lack of time in the workload of the teacher to prepare the lab activity, etc. Even in unfavorable or adverse conditions, according Lorenzato (2006), its implementation will benefit teachers and students. The lack of teacher training in their initial and continuing education, to use materials, and the lack of manuals with lab activities are also mentioned as factors that keep teachers from MTL. With propóposito assist the teacher of elementary or middle school in building a theme MTL prepared and we are providing a notebook of activities that provides a didactic sequence involving History and Mathematics. The book consists of four accompanied by suggestions for teachers activities, however the teacher has full autonomy to adapt the activities to the reality of your school. Among the instruments of navigation presented in this study chose to build the quadrant due to its simplicity, low cost of material and great teaching potential that this instrument has. But a theme lab is always being built and rebuilt as it is a research environment
Resumo:
The Área de Proteção Ambiental de Jenipabu was created by Decreto 12,620/95, covering the beaches of Redinha Nova, Santa Rita and Jenipabu and Campina communities in the municipality of Extremoz, and Africa community fragment, in Natal. This protected area was created in the context of expansion of tourism in Rio Grande do Norte, in the 1990s, in which PRODETUR investments made possible the installation of infrastructure equipment, mainly in the Via Costeira and Ponta Negra beach in Natal by inserting it in the sun and sea tourism route to Northeast Brazil. In this context the beach Jenipabu in Extremoz, became one of the main attractions for those visiting Natal, due to the natural elements of its landscape, its dune field, which is offered to tourists the buggy ride. In December 1994 the excess buggy rides held in these dunes led to IBAMA ban their access to buggy for carrying out environmental study. This measure resulted in the creation of APAJ in 1995 with the goal of ordering the use and occupation to protect its ecosystems, especially the dunes, the disordered tourism. Given this context, this work aims to analyze the process of creating the APAJ and changes in the geographic space of its beaches, Redinha Nova, Santa Rita and Jenipabu, from the materialization of tourism process, as well as their implications for its residents. To this end, this paper presents a discussion of environmental currents that developed in the western portion of the globe, focusing on the need to regulate small areas of the national territory in protected areas, and an analysis of public policies that enabled the implementation tourism in APAJ as well as the laws and decrees governing the process of creation and management. Using the theory of circuits of urban economy of the Santos (2008) to analyze the territory used by tourism on the beaches of Redinha Nova, Santa Rita and Jenipabu, showing their dependent relationship with the territory used by the upper circuit on the Via Costeira and in the Ponta Negra beach and its influence on the APAJ urbanization process. Ending with the analysis of the influence of the materialization of tourism in the transformation of stocks ways of being-in-space and space-be of the Santa Rita and Jenipabu beaches in each geographical situation of APAJ among the first decades of the twentieth century to the 2014. Fieldwork was conducted between 2012 and 2014, performing actions of qualitative interviews with older residents of Santa Rita and Jenipabu beaches, interviews with structured questionnaire with merchants of APAJ and collecting GPS points trades, identifying and mapping the territory used by the lower circuit in APAJ beaches.
Resumo:
The Acanthuridae family is a representative group from the marine fish that plays a key role in ecological dynamics of coral reefs. Three species are common along coastal reefs of Western Atlantic: Acanthurus coeruleus, Acanthurus bahianus and Acanthurus chirurgus. In the present study, cytogenetic data are presented for these three species Acanthurus based on classical cytogenetic methods and mapping of repetitive sequences such as ribosomal 18S and 5S rDNA and telomeric repeats to improve their karyotype evolutionary analyses. The cytogenetic pattern of these species indicated sequential steps of chromosomal rearrangements dating back 19 to 5 millions of years ago (M.a.) that accounted for their interspecific differences. A. coeruleus (2n=48; 2sm+4st+42a), A. bahianus (2n=36; 12m+2sm+4st+18a) and A. chirurgus (2n=34; 12m+2sm+4st+16a) share an older set of three chromosomal pairs that were originated through pericentric inversions. A set of six large metacentric pairs formed by Robertsonian (Rb) translocations found in A. bahianus and A. chirurgus and a putative in tandem fusion found in A. chirurgus are more recent events. The lack of interstitial telomeric sequences (ITS) in spite of several centric fusions in A. bahianus and A. chirurgus might be related to the long period of time after their occurrence (estimated in 5 M.a.). Furthermore, the homeologies among the chromosome pairs bearing ribosomal genes, in addition to other structural features, highlight large conserved chromosomal regions in the three species. Our findings indicate that macrostructural changes occurred during the cladogenesis of these species were not followed by conspicuous microstructural rearrangements in the karyotypes.
Resumo:
Registration of point clouds captured by depth sensors is an important task in 3D reconstruction applications based on computer vision. In many applications with strict performance requirements, the registration should be executed not only with precision, but also in the same frequency as data is acquired by the sensor. This thesis proposes theuse of the pyramidal sparse optical flow algorithm to incrementally register point clouds captured by RGB-D sensors (e.g. Microsoft Kinect) in real time. The accumulated errorinherent to the process is posteriorly minimized by utilizing a marker and pose graph optimization. Experimental results gathered by processing several RGB-D datasets validatethe system proposed by this thesis in visual odometry and simultaneous localization and mapping (SLAM) applications.
Resumo:
In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.
In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.
Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.