881 resultados para nanoscale bainite
Resumo:
Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The high surface-to-volume ratio of QDs enables the construction of a "smart" multifunctional nanoplatform, where the QDs serve not only as an imaging agent but also a nanoscaffold catering for therapeutic and diagnostic (theranostic) modalities. This mini review highlights the emerging applications of functionalized QDs as fluorescence contrast agents for imaging or as nanoscale vehicles for delivery of therapeutics, with special attention paid to the promise and challenges towards QD-based theranostics.
Resumo:
The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.
Resumo:
A solar cell relies on its ability to turn photons into current. Because short wavelength photons are typically absorbed near the top surface of a cell, the generated charge carriers recombine before being collected. But when a layer of quantum dots (nanoscale semiconductor particles) is placed on top of the cell, it absorbs short wavelength photons and emits them into the cell at longer wavelengths, which enables more efficient carrier collection. However, the resulting power conversion efficiency of the system depends critically on the quantum dot luminescence efficiency – the nature of this relationship was previously unknown. Our calculations suggest that a quantum dot layer must have high luminescence efficiency (at least 80%) to improve the current output of existing photovoltaic (PV) cells; otherwise, it may worsen the cell’s efficiency. Our quantum dot layer (using quantum dots with over 85% quantum yield) slightly reduced the efficiency of our PV cells. We observed a decrease in short circuit current of a commercial-grade cell from 0.1977 A to 0.1826 A, a 7.6% drop, suggesting that improved optical coupling from the quantum dot emission into the solar cell is needed. With better optical coupling, we predict current enhancements between ~6% and ~8% for a solar cell that already has an antireflection coating. Such improvements could have important commercial impacts if the coating could be deployed in a scalable fashion.
Resumo:
A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.
Resumo:
A novel multiscale model of brittle crack propagation in an Ag plate with macroscopic dimensions has been developed. The model represents crack propagation as stochastic drift-diffusion motion of the crack tip atom through the material, and couples the dynamics across three different length scales. It integrates the nanomechanics of bond rupture at the crack tip with the displacement and stress field equations of continuum based fracture theories. The finite element method is employed to obtain the continuum based displacement and stress fields over the macroscopic plate, and these are then used to drive the crack tip forward at the atomic level using the molecular dynamics simulation method based on many-body interatomic potentials. The linkage from the nanoscopic scale back to the macroscopic scale is established via the Ito stochastic calculus, the stochastic differential equation of which advances the tip to a new position on the macroscopic scale using the crack velocity and diffusion constant obtained on the nanoscale. Well known crack characteristics, such as the roughening transitions of the crack surfaces, crack velocity oscillations, as well as the macroscopic crack trajectories, are obtained.
Resumo:
A commercial pyrometallurgical process for the extraction of platinum-group metals (PGM) from a feedstock slag was analysed with the use of a model based on computational fluid dynamics. The results of the modelling indicate that recovery depends on the behaviour of the collector phase. A possible method is proposed for estimation of the rate at which PGM particles in slag are absorbed into an iron collector droplet that falls through it. Nanoscale modelling techniques (for particle migration or capture) are combined with a diffusion-controlled mass-transfer model to determine the iron collector droplet size needed for >95% PGM recovery in a typical process bath (70 mm deep) in a realistic time-scale (<1 h). The results show that an iron droplet having a diameter in the range 0.1–0.3 mm gives good recovery (>90%) within a reasonable time. This finding is compatible with published experimental data. Pyrometallurgical processes similar to that investigated should be applicable to other types of waste that contain low levels of potentially valuable metals.
Resumo:
When operated with a metallic tip and sample the scanning tunnelling microscope constitutes a nanoscale, plasmonic light source yielding broadband emission up to a photon energy determined by the applied bias. The emission is due to tunnelling electron excitation and subsequent radiative decay of localized plasmon modes, which can be on the lateral scale of a single metal grain (similar to 25 nm) or less. For a Au-tip/Au-polycrystalline sample under ambient conditions it is found that the intensity and spectral content of the emitted light are not dependent on the lateral grain dimension, but are predominantly determined by the tip geometry. However, the intensity increases strongly with increasing film thickness (grain depth) up to 20-25 nm or approximately the skin depth of the Au film. Photon maps can show less emissive grains and two classes of this occurrence are distinguished. The first is geometrical in origin - a double-tip structure in this case - while the second is due to a contamination-induced lowering of the local work function that causes the tunnel gap to increase. It is suggested that differences in work-function lowering between grains presenting different crystalline facets, combined with an exponential decay in emitted light intensity with tip - sample distance, leads to grain contrast. These results are relevant to tip-enhanced Raman scattering and the fabrication of micro/nano-scale planar, light-emitting tunnel devices.
Resumo:
Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.
Resumo:
Field configured assembly is a programmable force field method that permits rapid, "hands-free" manipulation, assembly, and integration of mesoscale objects and devices. In this method, electric fields, configured by specific addressing of receptor and counter electrode sites pre-patterned at a silicon chip substrate, drive the field assisted transport, positioning, and localization of mesoscale devices at selected receptor locations. Using this approach, we demonstrate field configured deterministic and stochastic self-assembly of model mesoscale devices, i.e., 50 mum diameter, 670 nm emitting GaAs-based light emitting diodes, at targeted receptor sites on a silicon chip. The versatility of the field configured assembly method suggests that it is applicable to self-assembly of a wide variety of functionally integrated nanoscale and mesoscale systems.
Resumo:
Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C-60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom is difficult, but as a qubit the endohedral atom should be well shielded from environmental electrical noise. We also predict how the field penetration should increase with the fullerene radius. (C) 2004 American Institute of Physics.
Resumo:
Since the discovery of carbon nanotubes, it has been speculated that these materials should behave like nanoscale wires with unusual electronic properties and exceptional strength. Recently, 'ropes' of close-packed single-wall nanotubes have been synthesized in high yield. The tubes in these ropes are mainly of the (10,10) type3, which is predicted to be metallic. Experiments on individual nanotubes and ropes indicate that these systems indeed have transport properties that qualify them to be viewed as nanoscale quantum wires at low temperature. It has been expected that the close-packing of individual nanotubes into ropes does not change their electronic properties significantly. Here, however, we present first-principles calculations which show that a broken symmetry of the (10,10) tube caused by interactions between tubes in a rope induces a pseudogap of about 0.1 eV at the Fermi level. This pseudogap strongly modifies many of the fundamental electronic properties: we predict a semimetal-like temperature dependence of the electrical conductivity and a finite gap in the infrared absorption spectrum. The existence of both electron and hole charge carriers will lead to qualitatively different thermopower and Hall-effect behaviours from those expected for a normal metal.
Resumo:
Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.
Resumo:
The tight-binding (TB) approach to the modelling of electrical conduction in small structures is introduced. Different equivalent forms of the TB expression for the electrical current in a nanoscale junction are derived. The use of the formalism to calculate the current density and local potential is illustrated by model examples. A first-principles time-dependent TB formalism for calculating current-induced forces and the dynamical response of atoms is presented. An earlier expression for current-induced forces under steady-state conditions is generalized beyond local charge neutrality and beyond orthogonal TB. Future directions in the modelling of power dissipation and local heating in nanoscale conductors are discussed.
Resumo:
We present a self-consistent tight-binding formalism to calculate the forces on individual atoms due to the flow of electrical current in atomic-scale conductors. Simultaneously with the forces, the method yields the local current density and the local potential in the presence of current flow, allowing a direct comparison between these quantities. The method is applicable to structures of arbitrary atomic geometry and can be used to model current-induced mechanical effects in realistic nanoscale junctions and wires. The formalism is implemented within a simple Is tight-binding model and is applied to two model structures; atomic chains and a nanoscale wire containing a vacancy.
Resumo:
We present a novel method for creating damage-free ferroelectric nanostructures with a focused ion beam milling machine. Using a standard e-beam photoresist followed by a dilute acid wash, nanostructures ranging in size from 1 mu m down to 250 nm were created in a 90 nm thick lead zirconate titanate ( PZT) wafer. Transmission electron microscopy and piezoresponse force microscopy ( PFM) confirmed that the surfaces of the nanostructures remained damage free during fabrication, and showed no gallium implantation, and that there was no degradation of ferroelectric properties. In fact DC strain loops, obtained using PFM, demonstrated that the nanostructures have a higher piezoresponse than unmilled films. As the samples did not have any top hard mask, the method presented is unique as it allows for imaging of the top surface to understand edge effects in well-defined nanostructures. In addition, as no post-mill annealing was necessary, it facilitates investigation of nanoscale domain mechanisms without process-induced artefacts.