998 resultados para material utilization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli tehdä elinkaariarviointi (LCA) prosessiteollisuuden sekoittimelle Helmix HF-80 ja analysoida LCA-tulokset, vaikutus ilmaston lämpenemisen potentiaalin (GWP) suhteen, sekä tutkia GWP-vaikutuksen pienentämisen mahdollisuuksia. Tutkittavan sekoittimen mahdolliset käyttökohteet ovat sellu- ja paperiteollisuus, raskaiden jätenesteiden käsittely, sekä muut teollisuusalueet, joissa käytetään tämän tyyppisiä laitteita. Työssä on muun muassa käsitelty sekoitusprosessit, sekoituslaitteiden tyypit, niiden rakenteiden ominaisuudet, käyttötarkoitus, toimintaperiaatteet, sekä sellu- ja paperi-teollisuudessa käytettävien sekoittimien yleiskatsaus. Työssä on myös kuvattu elinkaariarviointi (LCA) -menetelmä ja sen käyttötarkoitus. Tärkeimmistä tuloksista voi mainita sen, että sekoittimen (ilman säiliötä, sähkömoottoria ja vaihteistoa) kokoelinkaaren ilmastonlämpenemisen potentiaali (GWP) on noin 750 000 kg CO2-Equiv. Sekoittimen tuotanto- ja kierrätysaikana syntyy vain 1200 kg CO2-Equiv. ja suurin osa 748 000 kg CO2-Equiv. johtuu sähköenergian kulutuksesta käytön aikana. Käyttöajan vaikutusta voisi pienentää arvoksi 0 kg CO2-Equiv. käyttämällä pelkästään uusiutuvaa energiaa. Jos tuotantoaikana käytetty energia myös korvataan uusiutuvalla energialla, niin GWP-arvo koko elinkaaren aikana laskee arvoon 1006 kg CO2eqv., mikä on vain 0,13 % saaduista tuloksista. Suurin osa tästä arvosta liittyy sekoittimen materiaalin, tässä tapauksessa ruostumattoman teräksen tuotantoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building Integrated Photovoltaics (BIPV) are considered as the future of photovoltaic (PV) technology. The advantage of BIPV system is its multi-functionality; they fulfil the functions of a building envelope with the added benefit of generating power by replacing the traditional roofing and façade materials with PV that generate power. In this thesis, different types of PV cells and modules have been described in detail with their efficiencies and usage trends in the last decade. The different BIPV products for roof and façade are discussed in detail giving several examples. The electricity generation potential of BIPV in selected countries is compared with their actual electricity consumption. Further, the avoided greenhouse gas (GHG) emissions associated with electricity generation from traditional sources and transportation and distribution (T&D) losses are calculated. The results illustrate huge savings in GHGs. In BIPV different types of façade and backsheets are used. In this thesis, selected backsheets and façade were characterized in terms of their surface structure identification using infrared spectroscopy (FTIR-ATR), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and physical characterization using surface energy measurements. By using FTIR-ATR, surface polymeric materials were identified and with SEM-EDX, identification of the surface elements was possible. Surface energy measurements were useful in finding the adhesives and knowing the surface energies of the various backsheets and façade. The strength of adhesion between the facade and backsheets was studied using peel test. Four different types of adhesives were used to study the fracture pattern and peel tests values to identify the most suitable adhesive. It was found out that pretreatment increased the adhesive strength significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strongest wish of the customer concerning chemical pulp features is consistent, uniform quality. Variation may be controlled and reduced by using statistical methods. However, studies addressing the application and benefits of statistical methods in forest product sector are scarce. Thus, the customer wish is the root cause of the motivation behind this dissertation. The research problem addressed by this dissertation is that companies in the chemical forest product sector require new knowledge for improving their utilization of statistical methods. To gain this new knowledge, the research problem is studied from five complementary viewpoints – challenges and success factors, organizational learning, problem solving, economic benefit, and statistical methods as management tools. The five research questions generated on the basis of these viewpoints are answered in four research papers, which are case studies based on empirical data collection. This research as a whole complements the literature dealing with the use of statistical methods in the forest products industry. Practical examples of the application of statistical process control, case-based reasoning, the cross-industry standard process for data mining, and performance measurement methods in the context of chemical forest products manufacturing are brought to the public knowledge of the scientific community. The benefit of the application of these methods is estimated or demonstrated. The purpose of this dissertation is to find pragmatic ideas for companies in the chemical forest product sector in order for them to improve their utilization of statistical methods. The main practical implications of this doctoral dissertation can be summarized in four points: 1. It is beneficial to reduce variation in chemical forest product manufacturing processes 2. Statistical tools can be used to reduce this variation 3. Problem-solving in chemical forest product manufacturing processes can be intensified through the use of statistical methods 4. There are certain success factors and challenges that need to be addressed when implementing statistical methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Additive manufacturing (shortened as AM), or more commonly 3D printing, consists of wide variety of different modern manufacturing technologies. AM is based on direct printing of a digital 3D model to a final product which is fabricated adding material layer by layer. This is from where term additive manufacturing has its origin. It is not only material what is added, but it is also value, properties etc. which are added. AM enables production of different and even better products compared to conventional manufacturing technologies. An estimation of potential of additive manufacturing can be gathered by considering the potential of laser cutting, which is one of the most widely used modern manufacturing technologies. This technique has been used over 40 years, and whole market around this technology is at the moment c. four billion euros and yearly growth is around 10 %. One factor affecting this success of laser cutting is that laser cutting enables radical improvements to products made of flat sheet. AM and 3D printing will do the same for three dimensional parts. Laser devices, which are at the moment used in 3D printing, are globally at the moment only around 1% of all laser devices used in any fabrication technology, so even with a cautious estimate the potential growth of at least 100 % is coming in next few years. Role of education is very important, when this kind of modern technology is industrially implemented. When both generation entering to work life and also generation who has been a while in work life understands new technology, its potential and limitations, this is the point when also product design can be rethought Potential of product design is driving force for wide use of additive manufacturing and 3D printing. Utilization of additive manufacturing and 3D printing is also opportunity for Finland and Finnish industry. This technology can save Finnish manufacturing industry. This technique has stron potential, as Finland has traditionally strong industrial know-how and good ICT knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master’s thesis examines the effects of increased material recycling on different waste-to-energy concepts. With background study and a developed techno-economic computational method the feasibility of chosen scenarios with different combinations of mechanical treatment and waste firing technologies can be evaluated. The background study covers the waste scene of Finland, and potential market areas Poland and France. Calculated cases concentrate on municipal solid waste treatment in the Finnish operational environment. The chosen methodology to approach the objectives is techno-economic feasibility assessment. It combines calculation methods of literature and practical engineering to define the material and energy balances in chosen scenarios. The calculation results together with other operational and financial data can be concluded to net present values compared between the scenarios. For the comparison, four scenarios, most vital and alternative between each other, are established. The baseline scenario is grate firing of source separated mixed municipal solid waste. Second scenario is fluidized bed combustion of solid recovered fuel produced in mechanical treatment process with metal separation. Third scenario combines a biomaterial separation process to the solid recovered fuels preparation and in the last scenario plastics are separated in addition to the previous operations. The results indicated that the mechanical treatment scenarios still need to overcome some problems to become feasible. Problems are related to profitability, residue disposal and technical reliability. Many uncertainties are also related to the data gathered over waste characteristics, technical performance and markets. With legislative support and development of further processing technologies and markets of the recycled materials the scenarios with biomaterial and plastic separation may operate feasibly in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global digitalization has affected also industrial sector. A trend called Industrial Internet has been present for some years and established relatively steady position in businesses. Industrial Internet is also referred with the terminology Industry 4.0 and in consumer businesses IoT (Internet of Things). Eventually, trend consists of many traditionally proven technologies and concepts, such as condition monitoring, remote services, predictive maintenance and Internet customer portals. All these technologies and information related to them are estimated to change the rules of business in industrial sector. This may result even a new industrial revolution. This research has its focus on Industrial Internet products, services and applications. The study analyses four case companies and their digital service offerings. According to this analysis the comparison of these services is done to find out if there is still space for companies to gain competitive advantage through differentiation with these state of the art solutions. One of the case companies, Case Company Ltd., is working as a primary case company and a subscriber of this particular research. The research and results are analyzed primarily from this company’s perspective and need. In empirical part, the research clarifies how Case Company Ltd. has allocated its development resources through last five years. These allocations in certain categories are then compared to other case companies’ current customer offering and conclusions are made how the approach of different companies differ from each other. Existing theoretical knowledge of Industrial Internet is about to find its shape. In this research we take a look how the case company analysis and findings correlate with the existing knowledge and literature of the topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochromism, the phenomenon of reversible color change induced by a small electric charge, forms the basis for operation of several devices including mirrors, displays and smart windows. Although, the history of electrochromism dates back to the 19th century, only the last quarter of the 20th century has its considerable scientific and technological impact. The commercial applications of electrochromics (ECs) are rather limited, besides top selling EC anti-glare mirrors by Gentex Corporation and airplane windows by Boeing, which made a huge commercial success and exposed the potential of EC materials for future glass industry. It is evident from their patents that viologens (salts of 4,4ʹ-bipyridilium) were the major active EC component for most of these marketed devices, signifying the motivation of this thesis focusing on EC viologens. Among the family of electrochromes, viologens have been utilized in electrochromic devices (ECDs) for a while, due to its intensely colored radical cation formation induced by applying a small cathodic potential. Viologens can be synthesized as oligomer or in the polymeric form or as functionality to conjugated polymers. In this thesis, polyviologens (PVs) were synthesized starting from cyanopyridinium (CNP) based monomer precursors. Reductive coupling of cross-connected cyano groups yields viologen and polyviologen under successive electropolymerization using for example the cyclic voltammetry (CV) technique. For further development, a polyviologen-graphene composite system was fabricated, focusing at the stability of the PV electrochrome without sacrificing its excellent EC properties. High electrical conductivity, high surface area offered by graphene sheets together with its non-covalent interactions and synergism with PV significantly improved the electrochrome durability in the composite matrix. The work thereby continued in developing a CNP functionalized thiophene derivative and its copolymer for possible utilization of viologen in the copolymer blend. Furthermore, the viologen functionalized thiophene derivative was synthesized and electropolymerized in order to explore enhancement in the EC contrast and overall EC performance. The findings suggest that such electroactive viologen/polyviologen systems and their nanostructured composite films as well as viologen functionalized conjugated polymers, can be potentially applied as an active EC material in future ECDs aiming at durable device performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vapaakappalekartuntaan perustuva tilasto Suomessa julkaistuista pienpainatteista, julisteista, toimintakertomuksista ja kunnallisista julkaisuista vuodesta 1991 lähtien. Pienpainatelehdet sisältyvät tilastoon vuodesta 2014 lähtien

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vapaakappalekartuntaan perustuva tilasto Suomessa julkaistuista pienpainatteista, julisteista, toimintakertomuksista ja kunnallisista julkaisuista vuodesta 1991 lähtien. Pienpainatelehdet sisältyvät tilastoon vuodesta 2014 lähtien

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.