933 resultados para lymph-node targeting
Resumo:
The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR pathway is one of the most frequently activated signaling pathways in prostate cancer cells, and loss of the tumor suppressor PTEN and amplification of PIK3CA are the two most commonly detected mechanisms for the activation of these pathways. Aberrant activation of PI3K/Akt/mTOR has been implicated not only in the survival and metastasis of prostate cancer cells but also in the development of drug resistance. As such, selective inactivation of this pathway may provide opportunities to attack prostate cancer from all fronts. However, while preclinical studies examining specific inhibitors of PI3K or mTOR have yielded promising results, the evidence from clinical trials is less convincing. Emerging evidence from the analyses of some solid tumors suggests that a class of dual PI3K/mTOR inhibitors, which bind to and inactivate both PI3K and mTOR, may achieve better anti-cancer outcomes. In this review, we will summarize the mechanisms of action of these inhibitors, their effectiveness when used alone or in combination with other chemotherapeutic compounds, and their potential to serve as the next generation therapies for prostate cancer patients, particularly those who are resistant to the frontline chemotherapeutic drugs.
Resumo:
•EMT is important for embryonic development, wound healing, and placentation. •Some cancers appear to exploit this process for increased metastatic potential. •Therefore, this pathway is of great therapeutic interest in the treatment of cancer. The spread of cancer cells to distant organs represents a major clinical challenge in the treatment of cancer. Epithelial–mesenchymal transition (EMT) has emerged as a key regulator of metastasis in some cancers by conferring an invasive phenotype. As well as facilitating metastasis, EMT is thought to generate cancer stem cells and contribute to therapy resistance. Therefore, the EMT pathway is of great therapeutic interest in the treatment of cancer and could be targeted either to prevent tumor dissemination in patients at high risk of developing metastatic lesions or to eradicate existing metastatic cancer cells in patients with more advanced disease. In this review, we discuss approaches for the design of EMT-based therapies in cancer, summarize evidence for some of the proposed EMT targets, and review the potential advantages and pitfalls of each approach
Resumo:
There is strong evidence to suggest that the combination of alcohol and chronic repetitive stress leads to long-lasting effects on brain function, specifically areas associated with stress, motivation and decision-making such as the amygdala, nucleus accumbens and prefrontal cortex. Alcohol and stress together facilitate the imprinting of long-lasting memories. The molecular mechanisms and circuits involved are being studied but are not fully understood. Current evidence suggests that corticosterone (animals) or cortisol (humans), in addition to direct transcriptional effects on the genome, can directly regulate pre- and postsynaptic synaptic transmission through membrane bound glucocorticoid receptors (GR). Indeed, corticosterone-sensitive synaptic receptors may be critical sites for stress regulation of synaptic responses. Direct modulation of synaptic transmission by corticosterone may contribute to the regulation of synaptic plasticity and memory during stress (Johnson et al., 2005; Prager et al., 2010). Specifically, previous data has shown that long term alcohol (1) increases the expression of NR2Bcontaining NMDA receptors at glutamate synapses, (2) changes receptor density, and (3) changes morphology of dendritic spines (Prendergast and Mulholland; 2012). During alcohol withdrawal these changes are associated with increased glucocorticoid signalling and increased neuronal excitability. It has therefore been proposed that these synapse changes lead to the anxiety and alcohol craving associated with withdrawal (Prendergast and Mulholland; 2012). My lab is targeting this receptor system and the amygdala in order to understand the effect of combining alcohol and stress on these pathways. Lastly, we are testing GR specific compounds as potential new medications to promote the development of resilience to developing addiction.
Resumo:
Androgen withdrawal is the only effective form of systemic therapy for men with advanced disease, producing symptomatic and/or objective response in 80% of patients. Unfortunately, androgen independent (AI) progression and death occurs within a few years in the majority of these cases (6). Prostate cancer is highly chemoresistant, with objective response rates of 10% and no demonstrated survival benefit (28). Hormone refractory prostate cancer (HRPC) is therefore the main obstacle to improving the survival and quality of life in patients with advanced disease, and novel therapeutic strategies that target the molecular basis of androgen and chemoresistance are required.
Resumo:
Background Risky single occasion drinking (RSOD; 4 or more drinks in <6 h) more than doubles the risk of injury in young people (15 - 25 years). The potential role of smartphone apps in reducing RSOD in young people is yet to be explored. Objective: To describe the initial prototype testing of ‘Ray's Night Out’, a new iPhone app targeting RSOD in young people. Method Quantitative and qualitative methods were used to evaluate the quality, perceived utility, and acceptability of the app among nine young people (19e23 years). Results Participants reported Ray's Night Out had good to excellent levels of functionality and visual appeal, acceptable to good levels of entertainment, interest and information, and acceptable levels of customization and interactivity. Young people thought the app had high levels of youth appeal, would prompt users to think about their alcohol use limits, but was unlikely to motivate a change in alcohol use in its current form. Qualitative data provided several suggestions for improving the app. Conclusion Following revision, Ray's Night Out could provide an effective intervention for RSOD in non help-seeking young people. A randomized controlled trial is currently underway to test the final prototype of the app.
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
- Introduction Research identifies truck drivers as being at high risk of chronic disease. For most truck drivers their workplace is their vehicle. Truck drivers’ health is impacted by the limitations of this unique working environment, including reduced opportunities for physical activity and the intake of healthy foods. Workplaces are widely recognised as effective platforms for health promotion. However, the effectiveness of traditional and contemporary health promotion interventions in truck drivers’ novel workplace is unknown. - Methods This project worked with six transport industry workplaces in Queensland, Australia over a two-year period. Researchers used Participatory Action Research (PAR) processes to engage truck drivers and workplace managers in the implementation and evaluation of six workplace health promotion interventions. These interventions were designed to support truck drivers to increase their physical activity and access to healthy foods at work. They included traditional health promotion interventions such as a free fruit initiative, a ten thousand steps challenge, personal health messages and workplace posters, and a contemporary social media intervention. Participants were engaged via focus groups, interviews and mixed-methods surveys. - Results The project achieved positive changes in truck drivers’ health knowledge and health behaviours, particularly related to nutrition. There were positive changes in truck drivers’ self-reported health rating, body mass index (BMI) and readiness to make health-related lifestyle changes. There were also positive changes in truck drivers reporting their workplace as a key source of health information. These changes were underpinned by a positive shift in the culture of participating workplaces. Truck drivers’ perceptions of their workplace valuing, encouraging, modelling and facilitating healthy nutrition and physical activity behaviours improved. PAR processes enabled researchers to develop relationships with workplace managers, contextualise interventions and deliver rigorous outcomes. Despite the novelty of truck drivers’ mobile workplace, traditional health promotion interventions were more effective than contemporary ones. - Conclusion In this workplace health promotion project targeting a ‘hard-to-reach’ group of truck drivers, a combination of well-designed traditional workplace interventions and the PAR process resulted in positive health outcomes.
Resumo:
Hybrids between Corymbia torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora subsp. variegata (F.Muell.) A.R.Bean & M.W.McDonald are used extensively to establish forestry plantations in subtropical Australia. Methods were developed for in vitro seed germination, shoot multiplication and plantlet formation that could be used to establish in vitro and ex vitro clone banks of juvenile Corymbia hybrids. Effects of sodium hypochlorite concentration and exposure time on seed contamination and germination, and effects of cytokinin and auxin concentrations on shoot multiplication and subsequent rooting, were assessed. A two-step surface sterilisation procedure, involving 70% ethanol followed by 1% sodium hypochlorite, provided almost no contamination and at least 88% germination. A novel method of cytokinin-free node culture proved most effective for in vitro propagation. Lateral bud break of primary shoots was difficult to induce by using cytokinin, but primary shoots rooted prolifically, elongated rapidly and produced multiple nodes in the absence of exogenous cytokinin. Further multiplication was obtained either by elongating lateral shoots of nodal explants in cytokinin-free medium or by inducing organogenic callus and axillary shoot proliferation with 2.2 µm benzyladenine. Plantlets were produced using an in vitro soil-less method that provided extensive rooting in sterile propagation mixture. These methods provide a means for simultaneous laboratory storage and field-testing of clones before selection and multiplication of desired genotypes.
Resumo:
Proteolytic enzymes, such as matrix metalloproteinases (MMP), are associated to the progression of several cancers. They degrade extracellular components, which helps tumors to expand and cancer cells to escape from the primary site. Of all MMPs, gelatinases (MMP-2 and -9) and membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14), in particular, are often associated to more aggressive types of head and neck carcinomas as well as to a poorer outcome in patient survival. Although therapies during the last decades have advanced, the mortality of the disease is still rather high and adjuvant therapies are searched for continuously. MMP-9 and MT1-MMP are also involved in neo-angiogenesis, which is necessary for tumor expansion. For this reason, we have identified synthetic peptides-targeting gelatinases and MT1-MMP, and have also evaluated their anticancer effects in vitro and in vivo. Antigelatinolytic peptides effectively inhibited tongue-carcinoma cell invasion and reduced the growth of xenografted tumors. In tumor samples of mice that were treated with antigelatinolytic peptides, the micro-vessel density was significantly reduced. We also identified a novel MT1-MMP targeting peptide and demonstrated that it exerted anticancer effects against several malignant cell lines in vitro. The effects of MT1-MMP inhibition on tongue-squamous cell carcinomas were evaluated by using xenograft tumors, which it effectively inhibited. Tranexamic acid was also demonstrated to inhibit tongue-squamous cell carcinoma invasion, most probably due to its ability to prevent the plasmin-mediated activation of proMMP-9. Leukocyte β2 integrins are another interesting option when evaluating targets for the therapeutic intervention of inflammatory conditions or malignancies of hematopoietic origin, since β2 integrins are expressed mainly by leukocytes. We identified a novel technique for screening small-molecule libraries against β2 integrins, and by using this technique we identified a novel αMβ2 integrin-binding chemical (IMB-10). IMB-10 significantly enhances leukocyte adhesion and inhibits their motility. We also demonstrated that IMB-10 can be used to inhibit inflammation and lymphoma growth in vivo. Interestingly, IMB-10 also reduced leukocyte tumor infiltration and inhibited tumor invasion.
Resumo:
The objectives of this projects are: 1)To ensure the identification of genomic DNA markers for phosphine resistance in Rhyzopertha dominica and Tribolium castaneum; 2) To determine gene function of identified phosphine resistance genes in Rhyzopertha dominica and Tribolium castaneum; and 3) Predict future problems by characterising international resistances using our genes as a starting point to determine strong resistance can get by determining similarities with Australia.
Latent TGF-β binding proteins -3 and -4 : transcriptional control and extracellular matrix targeting
Resumo:
Extracellular matrix (ECM) is a complex network of various proteins and proteoglycans which provides tissues with structural strength and resilience. By harvesting signaling molecules like growth factors ECM has the capacity to control cellular functions including proliferation, differentiation and cell survival. Latent transforming growth factor β (TGF-β) binding proteins (LTBPs) associate fibrillar structures of the ECM and mediate the efficient secretion and ECM deposition of latent TGF-β. The current work was conducted to determine the regulatory regions of LTBP-3 and -4 genes to gain insight into their tissue-specific expression which also has impact on TGF-β biology. Furthermore, the current research aimed at defining the ECM targeting of the N-terminal variants of LTBP-4 (LTBP-4S and -4L), which is required to understand their functions in tissues and to gain insight into conditions in which TGF-β is activated. To characterize the regulatory regions of LTBP-3 and -4 genes in silico and functional promoter analysis techniques were employed. It was found that the expression of LTBP-4S and -4L are under control of two independent promoters. This finding was in accordance with the observed expression patterns of LTBP-4S and -4L in human tissues. All promoter regions characterized in this study were TATAless, GC-rich and highly conserved between human and mouse species. Putative binding sites for Sp1 and GATA family of transcription factors were recognized in all of these regulatory regions. It is possible that these transcription factors control the basal expression of LTBP-3 and -4 genes. Smad binding element was found within the LTBP-3 and -4S promoter regions, but it was not present in LTBP-4L promoter. Although this element important for TGF-β signaling was present in LTBP-4S promoter, TGF-β did not induce its transcriptional activity. LTBP-3 promoter activity and mRNA expression instead were stimulated by TGF-β1 in osteosarcoma cells. It was found that the stimulatory effect of TGF-β was mediated by Smad and Erk MAPK signaling pathways. The current work explored the ECM targeting of LTBP-4S and identified binding partners of this protein. It was found that the N-terminal end of LTBP-4S possesses fibronectin (FN) binding sites which are critical for its ECM targeting. FN deficient fibroblasts incorporated LTBP-4S into their ECM only after addition of exogenous FN. Furthermore, LTBP-4S was found to have heparin binding regions, of which the C-terminal binding site mediated fibroblast adhesion. Soluble heparin prevented the ECM association of LTBP-4S in fibroblast cultures. In the current work it was observed that there are significant differences in the secretion, processing and ECM targeting of LTBP-4S and -4L. Interestingly, it was observed that most of the secreted LTBP-4L was associated with latent TGF-β1, whereas LTBP-4S was mainly secreted as a free form from CHO cells. This thesis provides information on transcriptional regulation of LTBP-3 and -4 genes, which is required for the deeper understanding of their tissue-specific functions. Further, the current work elucidates the structural variability of LTBPs, which appears to have impact on secretion and ECM targeting of TGF-β. These findings may advance understanding the abnormal activation of TGF-β which is associated with connective tissue disorders and cancer.
Resumo:
This project covered the 2006-2011 operations of the Northern Node of Barley Breeding Australia (BBA-North). BBANorth collaborated with the Southern and Western nodes and all BBA participants to deliver improved barley varieties to the Australian grains industry. BBA-North focused on the northern region and was the national leader in breeding high yielding, disease resistant barleys with grain quality that enhanced the crop's status as a preferred feed grain. Development of varieties for the malting and brewing industries was also targeted. This project incorporated coordination, breeding, regional evaluation, foliar and soil-borne disease tests, molecular marker screens and grain and malt quality analyses.
Resumo:
Concerns about excessive sediment loads entering the Great Barrier Reef (GBR) lagoon in Australia have led to a focus on improving ground cover in grazing lands. Ground cover has been identified as an important factor in reducing sediment loads, but improving ground cover has been difficult for reef stakeholders in major catchments of the GBR. To provide better information an optimising linear programming model based on paddock scale information in conjunction with land type mapping was developed for the Fitzroy, the largest of the GBR catchments. This identifies at a catchment scale which land types allow the most sediment reduction to be achieved at least cost. The results suggest that from the five land types modelled, the lower productivity land types present the cheapest option for sediment reductions. The study allows more informed decision making for natural resource management organisations to target investments. The analysis highlights the importance of efficient allocation of natural resource management funds in achieving sediment reductions through targeted land type investments. © 2012.
Resumo:
Seven Dactylopius tomentosus (Lamarck) biotypes were collected from a range of Cylindropuntia spp. in Mexico, South Africa and United States of America (USA) and imported into quarantine facilities at the Ecosciences Precinct. Host range trials were conducted for each biotype and further assessed against the Cylindropuntia species that are naturalised in Australia to determine the most effective biotype for each species. Host range was confined to the Cylindropuntia for all seven biotypes. In the efficacy trials, C. imbricata (Haw.) F.M.Knuth was killed by the ‘imbricata’ biotype within 16 weeks and C. kleiniae (DC.) F.M.Knuth died within 26 weeks. Cylindropuntia fulgida var. mamillata (DC.) Backeb. and C. imbricata were killed by the ‘fulgida’ biotype within 18 weeks. On-going trials suggest that C. rosea (DC.) Backeb. could be controlled by either the ‘acanthocarpa’ or the ‘acanthocarpa × echinocarpa’ biotypes. Cylindropuntia spinosior (Englem.) F.M.Knuth was not susceptible to any of the D. tomentosus biotypes assessed. A clear designation of which D. tomentosus biotype is most suited for each Cylindropuntia species will improve and increase the effectiveness of biological control of these weed species