866 resultados para high dimensional biomimetic informatics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ nanofibers and quasi-one-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ microbelts have been prepared by a simple and cost-effective electrospinning process. X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, photoluminescence (PL), and cathodoluminescence spectra were used to characterize the samples. SEM results indicate that the as-prepared fibers and belts are smooth and uniform with a length of several tens to hundreds of micrometers, whose diameters decrease after being annealed at 1000 degrees C for 3 h. Under ultraviolet excitation and low-voltage electron beam excitation, the doped rare earth ions show their characteristic emission, that is, Ce3+ 5d-4f and Tb3+ D-5(4)-F-7(J) (J = 6, 5 4, 3) transitions, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-dimensional CaMoo(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO4:Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO4 samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO42- groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO4:Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-dimensional Mn2+-doped Zn2SiO4 rnicrobelts and microfibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The XRD and DTA results show that the Zn2SiO4 phase begins to crystallize at 800 degrees C and crystallizes completely around 1000 degrees C. SEM results indicate that the as-prepared microbelts/fibers are smooth, whose diameters decrease with increasing the annealing temperature. The average diameter of the Zn2SiO4:Mn2+ microfibers annealed at 1000 degrees C is 0.32 mu m, and their lengths reach up to several millimeters. The average width and thickness of the Zn2SiO4:Mn2+ microbelts fired at 1000 degrees C are around 0.48 and 0.24 mu m, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly monodisperse and well-defined one-dimensional (1D) Gd2O3:Eu3+ nanorods and microrods were successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent heat treatment process, without using any catalyst or template. X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The size of the Gd2O3:Eu3+ rods could be modulated from micro- to nanoscale with the increase of pH value using ammonia solution. The as-formed product via the hydrothermal process, Gd(OH)(3):Eu3+, could transform to cubic Gd2O3:Eu3+ with the same morphology and a slight shrinking in size after a postannealing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H2PtCl6) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shape-con trolled synthesis of micrometer- sized gold nanocoralline was simply realized via a wet-chemical approach. The as-prepared hierarchical gold nanocorallines (HGNs) on the solid substrate were initially applied in SERS analysis with 4-aminothiophenol (4-ATP) as the probe molecule. The HGN-modified glass substrate exhibits a higher SERS effect (one order of magnitude higher) than the aggregated gold nanoparticle (similar to 25 nm)-modified glass substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, one- and two-dimensional gel electrophoresis combined with high resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) have been applied as powerful approaches for the proteome analysis of surfactant proteins SP-A and SP-D, including identification of structurally modified and truncation forms, in bronchoalveolar lavage fluid from patients with cystic fibrosis, chronic bronchitis and pulmonary alveolar proteinosis. Highly sensitive micro preparation techniques were developed for matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS analysis which provided the identification of surfactant proteins at very low levels. Owing to the high resolution, FT-ICR MS was found to provide substantial advantages for the structural identification of surfactant proteins from complex biological matrices with high mass determination accuracy. Several protein bands corresponding to SP-A and SP-D were identified by MALDI-FT-ICR MS after electrophoretic separation by one- and two-dimensional gel electrophoresis, and provided the identification of structural modifications (hydroxy-proline) and degradation products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two novel organic-inorganic hybrid complexes [(CuX)(2)(o-phen)](infinity) (X = Br (1), Cl (2); o-phen = o-phenanthroline) have been synthesized hydrothermally and characterized structurally by elemental analyses, IR, ESR, XPS spectrum, TG analyses and single-crystal X-ray diffraction. Both title compounds exhibit novel one-dimensional chainlike copper halide scaffolding constructed by the unusual [Cu3X3] hexagon motifs by sharing opposite edges, where a single Cu site of each [Cu3X3] hexagon is chelated with N donors of o-phen group. To our knowledge, such basic o-phen-copper halide skeleton has not been reported hitherto. Moreover, TG analyses indicate that both title compounds possess high thermal stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium dodecyl sulfate(SDS) is a powerful solubilizing detergent which is often used during the separation of highly complex protein mixtures by one- or two-dimensional (2D) gel electrophoresis. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely used technique for mass spectrometric analysis of some protein molecules compared to other techniques. But the presence of SDS or some salts usually leads to signal deterioration when using MALDI-MS. A method for using nitrocellulose membrane as the solid-phase carrier combined with n-octyl-beta-D-glucopyranoside in the matrix highly enhances the sensitivity of the molecular mass determination of lysozyme. This technique has the advantage that the signal-to-noise of the molecular weight profile is improved compared with the mass spectrum and the profile is relatively easy to interpret.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single chain single crystals (SCSC) of gutta percha (GP) were prepared by a dilute-solution spraying method. Electron diffraction (ED) patterns revealed that the single chain single crystal was of a new crystalline modification, the delta form. The images of SCSC of GP obtained with a high resolution electron microscope (HREM) showed a two dimensional periodic structure. Most of the images consisted of lattice fringes derived from the (001) zone. This is the first time that the single chain single crystal images of GP have been observed at a molecular level. Micrographs were image processed using optical filtering methods to improve the signal-to-noise ratio, and were compared with computer-generated simulations of the images. From the viewpoint of the defects seen in high resolution images, the crystal formation and melting processes are discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional (3-D) coupled physical and biological model was used to investigate the physical processes and their influence on the ecosystem dynamics of the Bohai Sea of China. The physical processes include M-2 tide, time - varying wind forcing and river discharge. Wind records from I to 31 May in 1993 were selected to force the model. The biological model is based on a simple, nitrate and phosphate limited, lower trophic food web system. The simulated results showed that variation of residual currents forced by M, tide, river discharge and time-varying wind had great impact on the distribution of phytoplankton biomass in the Laizhou Bay. High phytoplankton biomass appeared in the upwelling region. Numerical experiments based on the barotropic model and baroclinic model with no wind and water discharge were also conducted. Differences in the results by the baroclinic model and the barotropic model were significant: more patches appeared in the baroclinic model comparing with the barotropic model. And in the baroclinic model, the subsurface maximum phytoplankton biomass patches formed in the stratified water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantitative analysis of the individual compounds in tobacco essential oils is performed by comprehensive two-dimensional gas chromatography (GC x GC) combined with flame ionization detector (FID). A time-of-flight mass spectrometer (TOF/MS) was coupled to GC x GC for the identification of the resolved peaks. The response of a flame ionization detector to different compound classes was calibrated using multiple internal standards. In total, 172 compounds were identified with good match and 61 compounds with high probability value were reliably quantified. For comparative purposes, the essential oil sample was also quantified by one-dimensional gas chromatography-mass spectrometry (GC/MS) with multiple internal standards method. The results showed that there was close agreement between the two analysis methods when the peak purity and match quality in one-dimensional GC/MS are high enough. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cox, S.J. (2006) The mixing of bubbles in two-dimensional bidisperse foams under extensional shear. Journal of Non-Newtonian Fluid Mechanics . 137:39-45.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neoplastic tissue is typically highly vascularized, contains abnormal concentrations of extracellular proteins (e.g. collagen, proteoglycans) and has a high interstitial fluid pres- sure compared to most normal tissues. These changes result in an overall stiffening typical of most solid tumors. Elasticity Imaging (EI) is a technique which uses imaging systems to measure relative tissue deformation and thus noninvasively infer its mechanical stiffness. Stiffness is recovered from measured deformation by using an appropriate mathematical model and solving an inverse problem. The integration of EI with existing imaging modal- ities can improve their diagnostic and research capabilities. The aim of this work is to develop and evaluate techniques to image and quantify the mechanical properties of soft tissues in three dimensions (3D). To that end, this thesis presents and validates a method by which three dimensional ultrasound images can be used to image and quantify the shear modulus distribution of tissue mimicking phantoms. This work is presented to motivate and justify the use of this elasticity imaging technique in a clinical breast cancer screening study. The imaging methodologies discussed are intended to improve the specificity of mammography practices in general. During the development of these techniques, several issues concerning the accuracy and uniqueness of the result were elucidated. Two new algorithms for 3D EI are designed and characterized in this thesis. The first provides three dimensional motion estimates from ultrasound images of the deforming ma- terial. The novel features include finite element interpolation of the displacement field, inclusion of prior information and the ability to enforce physical constraints. The roles of regularization, mesh resolution and an incompressibility constraint on the accuracy of the measured deformation is quantified. The estimated signal to noise ratio of the measured displacement fields are approximately 1800, 21 and 41 for the axial, lateral and eleva- tional components, respectively. The second algorithm recovers the shear elastic modulus distribution of the deforming material by efficiently solving the three dimensional inverse problem as an optimization problem. This method utilizes finite element interpolations, the adjoint method to evaluate the gradient and a quasi-Newton BFGS method for optimiza- tion. Its novel features include the use of the adjoint method and TVD regularization with piece-wise constant interpolation. A source of non-uniqueness in this inverse problem is identified theoretically, demonstrated computationally, explained physically and overcome practically. Both algorithms were test on ultrasound data of independently characterized tissue mimicking phantoms. The recovered elastic modulus was in all cases within 35% of the reference elastic contrast. Finally, the preliminary application of these techniques to tomosynthesis images showed the feasiblity of imaging an elastic inclusion.