929 resultados para heating aging
Resumo:
Although growth opportunities fade and profitability declines as firms mature, older firms are no more likely to be acquired than young firms are. This article documents and explains that phenomenon. We argue that, because mature organizations are rationally less flexible, they are more costly to integrate and therefore comparatively unattractive acquisition candidates. The evidence supports this explanation of the negative age dependence of takeover hazard. The evidence also shows that negative exogenous shocks to merger benefits further reduce the takeover hazard of mature firms. We test many alternative explanations and find no evidence that they can explain the hazard decline.
Resumo:
As firms have more assets in place, more of management’s limited attention is focused on managing assets in place rather than developing new growth options. Consequently, as firms grow older, they have fewer growth options and a lower ability to generate new growth options. This simple theory predicts that Tobin’s q falls with age. Further, competition in the product market is expected to slow down the decrease in Tobin’s q because it forces firms to look for alternative sources of rents. Similarly, greater competition in the labor market reduces the decrease in Tobin’s q with age because old firms are in a better position to hire employees that can help with innovation. In contrast, competition in the market for corporate control should accelerate the decline because it forces management to focus more on managing assets in place whose performance is more directly observable than on developing growth options where results may not be observable for some time. We find strong support for these predictions in tests using exogenous variation in competition
Resumo:
BACKGROUND Due to the increasing number of older people, there is a need for studies focused on this population. The aims of the present study are to assess oral and systemic conditions in individuals aged 60 to 95 years with access to dental insurance. METHODS Probing depths (PDs), tooth loss, alveolar bone levels, and systemic health were studied among a representative cohort of older individuals. RESULTS A total of 1,147 individuals in young-old (aged 60 or 67 years), old (aged 72 or 78 years), and old-old (aged ≥81 years) age groups were enrolled, including 200 individuals who were edentulous, in this study. Annual dental care was received by 82% of dentate individuals. Systemic diseases were common (diabetes: 5.8%; cardiovascular diseases: 20.7%; obesity: 71.2%; elevated C-reactive protein [CRP]: 98.4%). Serum CRP values were unrelated to periodontal conditions. Rates of periodontitis, defined as ≥30% of sites with a distance from cemento-enamel junction to bone of ≥5 mm, were 11.2% in women in the young-old age group and 44.9% in men in the old-old age group. Individuals in older age groups had a higher likelihood of periodontitis defined by bone loss and cutoff levels of PD ≥5 mm (odds ratio: 1.8; 95% confidence interval: 1.2 to 2.5; P <0.01). A total of 7% of individuals in the old-old age group had ≥20 teeth and no periodontitis. Systemic diseases, dental use, or smoking were not explanatory, whereas age and sex were explanatory for periodontitis. CONCLUSIONS The prevalence of periodontitis increased with age. Sex seems to be the dominant explanatory factor for periodontitis in older individuals. Despite frequent dental visits, overall oral health in the oldest age cohort was poor.
Resumo:
OBJECTIVE The aim of this study was to assess the association between frailty and risk for heart failure (HF) in older adults. BACKGROUND Frailty is common in the elderly and is associated with adverse health outcomes. Impact of frailty on HF risk is not known. METHODS We assessed the association between frailty, using the Health ABC Short Physical Performance Battery (HABC Battery) and the Gill index, and incident HF in 2825 participants aged 70 to 79 years. RESULTS Mean age of participants was 74 ± 3 years; 48% were men and 59% were white. During a median follow up of 11.4 (7.1-11.7) years, 466 participants developed HF. Compared to non-frail participants, moderate (HR 1.36, 95% CI 1.08-1.71) and severe frailty (HR 1.88, 95% CI 1.02-3.47) by Gill index was associated with a higher risk for HF. HABC Battery score was linearly associated with HF risk after adjusting for the Health ABC HF Model (HR 1.24, 95% CI 1.13-1.36 per SD decrease in score) and remained significant when controlled for death as a competing risk (HR 1.30; 95% CI 1.00-1.55). Results were comparable across age, sex, and race, and in sub-groups based on diabetes mellitus or cardiovascular disease at baseline. Addition of HABC Battery scores to the Health ABC HF Risk Model improved discrimination (change in C-index, 0.014; 95% CI 0.018-0.010) and appropriately reclassified 13.4% (net-reclassification-improvement 0.073, 95% CI 0.021-0.125; P = .006) of participants (8.3% who developed HF and 5.1% who did not). CONCLUSIONS Frailty is independently associated with risk of HF in older adults.
Resumo:
BACKGROUND The electrocardiographic PR interval increases with aging, differs by race, and is associated with atrial fibrillation (AF), pacemaker implantation, and all-cause mortality. We sought to determine the associations between PR interval and heart failure, AF, and mortality in a biracial cohort of older adults. METHODS AND RESULTS The Health, Aging, and Body Composition (Health ABC) Study is a prospective, biracial cohort. We used multivariable Cox proportional hazards models to examine PR interval (hazard ratios expressed per SD increase) and 10-year risks of heart failure, AF, and all-cause mortality. Multivariable models included demographic, anthropometric, and clinical variables in addition to established cardiovascular risk factors. We examined 2722 Health ABC participants (aged 74±3 years, 51.9% women, and 41% black). We did not identify significant effect modification by race for the outcomes studied. After multivariable adjustment, every SD increase (29 ms) in PR interval was associated with a 13% greater 10-year risk of heart failure (95% confidence interval, 1.02-1.25) and a 13% increased risk of incident AF (95% confidence interval, 1.04-1.23). PR interval >200 ms was associated with a 46% increased risk of incident heart failure (95% confidence interval, 1.11-1.93). PR interval was not associated with increased all-cause mortality. CONCLUSIONS We identified significant relationships of PR interval to heart failure and AF in older adults. Our findings extend prior investigations by examining PR interval and associations with adverse outcomes in a biracial cohort of older men and women.
Resumo:
The objective of the study was to determine if there are sex-based differences in the prevalence and clinical outcomes of subclinical peripheral artery disease (PAD). We evaluated the sex-specific associations of ankle-brachial index (ABI) with clinical cardiovascular disease outcomes in 2797 participants without prevalent clinical PAD and with a baseline ABI measurement in the Health, Aging, and Body Composition study. The mean age was 74 years, 40% were black, and 52% were women. Median follow-up was 9.37 years. Women had a similar prevalence of ABI < 0.9 (12% women versus 11% men; P = 0.44), but a higher prevalence of ABI 0.9-1.0 (15% versus 10%, respectively; P < 0.001). In a fully adjusted model, ABI < 0.9 was significantly associated with higher coronary heart disease (CHD) mortality, incident clinical PAD and incident myocardial infarction in both women and men. ABI < 0.9 was significantly associated with incident stroke only in women. ABI 0.9-1.0 was significantly associated with CHD death in both women (hazard ratio 4.84, 1.53-15.31) and men (3.49, 1.39-8.72). However, ABI 0.9-1.0 was significantly associated with incident clinical PAD (3.33, 1.44-7.70) and incident stroke (2.45, 1.38-4.35) only in women. Subclinical PAD was strongly associated with adverse CV events in both women and men, but women had a higher prevalence of subclinical PAD.
Resumo:
Phosphatidylserine (PS) is distributed almost entirely in the inner leaflet of the erythrocyte membrane bilayer, and appears to be maintained by a 32 kDa integral membrane protein (PS translocase). The expression of PS on the outer leaflet may serve as a recognition signal for macrophages, since insertion of PS into erythrocytes enhances their adherence to macrophages and clearance from the circulation. Therefore I have hypothesized that erythroid cells display PS on their outer leaflet early in differentiation and upon aging. Analysis of murine erythroleukemia cells (MELC, undifferentiated erythroid progenitor cells) showed high levels of PS on the outer leaflet that decreased during differentiation, correlating with the pattern of macrophage adherence. The activity of the PS translocase during differentiation appears to be unchanged although the equilibrium distribution of PS differs. This difference may be due to qualitative changes in the PS translocase. $\sp{125}$I-Bolton/Hunter-labeled-pyridyldithioethylamine ($\sp{125}$I-B/H-PDA), a radiolabeled probe for the PS translocase, labeled a 32 kDa protein in mature erythrocytes whereas in MELC a 45 kDa protein as well as a 32 kDa protein was identified. The abundance of the 45 kDa protein in relation to the 32 kDa protein declined during differentiation, possibly indicating this protein was a precursor of the 32 kDa protein. Analysis of the 45 kDa protein by N-glycosidase F and endoproteinase cleavage suggested this protein was not a glycosylated form of the 32 kDa protein but appeared to share some structural homology. Aged murine erythrocytes had elevated levels of PS on their outer leaflet, as well as decreased PS translocase activity. $\sp{125}$I-B/H-PDA labeled a 32 kDa protein in both normal and aged erythrocytes. However, the latter cells also contained a 28 kDa protein. Experimental evidence suggests that the appearance of the 28 kDa protein may be due to increased oxidation of aged erythrocytes. Examination of PS distribution showed that the levels of PS on the outer leaflet were elevated early in differentiation, decreased during the mature state, and returned to high levels as the erythrocyte aged. In conclusion,the levels of outer leaflet PS correlated with the differentiation status and macrophage recognition of erythroid cells. ^
Resumo:
Development of methods for rapid screening and stratification of subjects after exposure is an integral part of countermeasures against radiation. The potential demographic and exposure history-related heterogeneity of exposed populations warrants robust biomarkers that withstand and reflect such differences. In this study, the effect of aging and repeated exposure on the metabolic response to sublethal irradiation was examined in mice using UPLC-ESI-QTOF mass spectrometry. Aging attenuated postexposure elevation in excretions of DNA damage biomarkers as well as N(1)-acetylspermidine. Although N(1)-acetylspermidine and 2'-deoxyuridine elevation was highly correlated in all age groups, xanthine and N(1)-acetylspermidine elevation was poorly correlated in older mice. These results may reflect the established decline in DNA damage-repair efficiency associated with aging and indicate a novel role for polyamine metabolism in the process. Although repeated irradiation at long intervals did not affect the elevation of N(1)-acetylspermidine, 2'-deoxyuridine, and xanthine, it did significantly attenuate the elevation of 2'-deoxycytidine and thymidine compared to a single exposure. However, these biomarkers were found to identify exposed subjects with accuracy ranging from 82% (xanthosine) to 98% (2'-deoxyuridine), irrespective of their age and exposure history. This indicates that metabolic biomarkers can act as robust noninvasive signatures of sublethal radiation exposure.
Resumo:
Background In Switzerland, age is the predominant driver of solidarity transfers in risk adjustment (RA). Concerns have been voiced regarding growing imbalances in cost sharing between young and old insured due to demographic changes (larger fraction of elderly >65 years and rise in average age). Particularly young adults aged 19–25 with limited incomes have to shoulder increasing solidarity burdens. Between 1996 and 2011, monthly intergenerational solidarity payments for young adults have doubled from CHF 87 to CHF 182, which corresponds to the highest absolute transfer increase of all age groups. Results By constructing models for age-specific RA growth and for calculating the lifetime sum of RA transfers we investigated the causes and consequences of demographic changes on RA payments. The models suggest that the main driver for RA increases in the past was below average health care expenditure (HCE) growth in young adults, which was only half as high (average 2% per year) compared with older adults (average 4% per year). Shifts in age group distributions were only accountable for 2% of the CHF 95 rise in RA payments. Despite rising risk adjustment debts for young insured the balance of lifetime transfers remains positive as long as HCE growth rates are greater than the discount rate used in this model (3%). Moreover, the life-cycle model predicts that the lifetime rate of return on RA payments may even be further increased by demographic changes. Nevertheless, continued growth of RA contributions may overwhelm vulnerable age groups such as young adults. We therefore propose methods to limit the burden of social health insurance for specific age groups (e.g. young adults in Switzerland) by capping solidarity payments. Conclusions Taken together, our mathematical modelling framework helps to gain a better understanding of how demographic changes interact with risk adjustment and how redistribution of funds between age groups can be controlled without inducing further selection incentives. Those methods can help to construct more equitable systems of health financing in light of population aging.
Resumo:
While most healthy elderly are able to manage their everyday activities, studies showed that there are both stable and declining abilities during healthy aging. For example, there is evidence that semantic memory processes which involve controlled retrieval mechanism decrease, whereas the automatic functioning of the semantic network remains intact. In contrast, patients with Alzheimer’s disease (AD) suffer from episodic and semantic memory impairments aggravating their daily functioning. In AD, severe episodic as well as semantic memory deficits are observable. While the hallmark symptom of episodic memory decline in AD is well investigated, the underlying mechanisms of semantic memory deterioration remain unclear. By disentangling the semantic memory impairments in AD, the present thesis aimed to improve early diagnosis and to find a biomarker for dementia. To this end, a study on healthy aging and a study with dementia patients were conducted investigating automatic and controlled semantic word retrieval. Besides the inclusion of AD patients, a group of participants diagnosed with semantic dementia (SD) – showing isolated semantic memory loss – was assessed. Automatic and controlled semantic word retrieval was measured with standard neuropsychological tests and by means of event-related potentials (ERP) recorded during the performance of a semantic priming (SP) paradigm. Special focus was directed to the N400 or N400-LPC (late positive component) complex, an ERP that is sensitive to the semantic word retrieval. In both studies, data driven topographical analyses were applied. Furthermore, in the patient study, the combination of the individual baseline cerebral blood flow (CBF) with the N400 topography of each participant was employed in order to relate altered functional electrophysiology to the pathophysiology of dementia. Results of the aging study revealed that the automatic semantic word retrieval remains stable during healthy aging, the N400-LPC complex showed a comparable topography in contrast to the young participants. Both patient groups showed automatic SP to some extent, but strikingly the ERP topographies were altered compared to healthy controls. Most importantly, the N400 was identified as a putative marker for dementia. In particular, the degree of the topographical N400 similarity was demonstrated to separate healthy elderly from demented patients. Furthermore, the marker was significantly related to baseline CBF reduction in brain areas relevant for semantic word retrieval. Summing up, the first major finding of the present thesis was that all groups showed semantic priming, but that the N400 topography differed significantly between healthy and demented elderly. The second major contribution was the identification of the N400 similarity as a putative marker for dementia. To conclude, the present thesis added evidence of preserved automatic processing during healthy aging. Moreover, a possible marker which might contribute to an improved diagnosis and lead consequently to a more effective treatment of dementia was presented and has to be further developed.
Resumo:
Liquid–vapour homogenisation temperatures of fluid inclusions in stalagmites are used for quantitative temperature reconstructions in paleoclimate research. Specifically for this application, we have developed a novel heating/cooling stage that can be operated with large stalagmite sections of up to 17 × 35 mm2 to simplify and improve the chronological reconstruction of paleotemperature time-series. The stage is designed for use of an oil immersion objective and a high-NA condenser front lens to obtain high-resolution images for bubble radius measurements. The temperature accuracy of the stage is better than ± 0.1 °C with a precision (reproducibility) of ± 0.02 °C.
Resumo:
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.