Maintenance of phosphatidylserine asymmetry in erythroid cells during differentiation, aging, and its significance for macrophage recognition


Autoria(s): Pak, Charles Chung Hyon
Data(s)

01/01/1991

Resumo

Phosphatidylserine (PS) is distributed almost entirely in the inner leaflet of the erythrocyte membrane bilayer, and appears to be maintained by a 32 kDa integral membrane protein (PS translocase). The expression of PS on the outer leaflet may serve as a recognition signal for macrophages, since insertion of PS into erythrocytes enhances their adherence to macrophages and clearance from the circulation. Therefore I have hypothesized that erythroid cells display PS on their outer leaflet early in differentiation and upon aging. Analysis of murine erythroleukemia cells (MELC, undifferentiated erythroid progenitor cells) showed high levels of PS on the outer leaflet that decreased during differentiation, correlating with the pattern of macrophage adherence. The activity of the PS translocase during differentiation appears to be unchanged although the equilibrium distribution of PS differs. This difference may be due to qualitative changes in the PS translocase. $\sp{125}$I-Bolton/Hunter-labeled-pyridyldithioethylamine ($\sp{125}$I-B/H-PDA), a radiolabeled probe for the PS translocase, labeled a 32 kDa protein in mature erythrocytes whereas in MELC a 45 kDa protein as well as a 32 kDa protein was identified. The abundance of the 45 kDa protein in relation to the 32 kDa protein declined during differentiation, possibly indicating this protein was a precursor of the 32 kDa protein. Analysis of the 45 kDa protein by N-glycosidase F and endoproteinase cleavage suggested this protein was not a glycosylated form of the 32 kDa protein but appeared to share some structural homology. Aged murine erythrocytes had elevated levels of PS on their outer leaflet, as well as decreased PS translocase activity. $\sp{125}$I-B/H-PDA labeled a 32 kDa protein in both normal and aged erythrocytes. However, the latter cells also contained a 28 kDa protein. Experimental evidence suggests that the appearance of the 28 kDa protein may be due to increased oxidation of aged erythrocytes. Examination of PS distribution showed that the levels of PS on the outer leaflet were elevated early in differentiation, decreased during the mature state, and returned to high levels as the erythrocyte aged. In conclusion,the levels of outer leaflet PS correlated with the differentiation status and macrophage recognition of erythroid cells. ^

Identificador

http://digitalcommons.library.tmc.edu/dissertations/AAI9202582

Idioma(s)

EN

Publicador

DigitalCommons@The Texas Medical Center

Fonte

Texas Medical Center Dissertations (via ProQuest)

Palavras-Chave #Biology, Cell
Tipo

text