999 resultados para gauge field


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive study of the central part of the Sesia Lanzo Zone has been undertaken to identify pre-Alpine protoliths and to reconstruct the lithologic and tectonic setting of this part of the Western Alps. Three main complexes have been defined: 1) the Polymetamorphic Basement Complex, corresponding to the lower unit of the Sesia Lanzo Zone after COMPAGNONI et al. (1977), is further subdivided into the three following units: a) an Internal Unit characterized by eo-Alpine high pressure (HP) assemblages (DAL PIAZ et al., 1972) (Eclogitic Micaschists); b) an Intermediate Unit where HP parageneses are partially re-equilibrated under greenschist conditions and c) an External Unit where the main foliation is defined by a greenschist paragenesis (Gneiss Minuti auct.). 2) the Monometamorphic Cover Complex, subdivided into the followings: a) the Bonze Unit, composed of sheared metagabbros, eclogitized metabasalts with MORB geochemical affinity and related metasediments (micaschists, quartzites and Mn-cherts) and b) the Scalaro Unit, containing predominantly metasediments of supposed Permo-Triassic age (yellow dolomitic marbles, calcschists and conglomeratic limestones, micaschists and quartzites with thin levels of basic rocks with within plate basalts [WPB] geochimical affinity). Multiple lithostratigraphic sequences for the Monometamorphic Cover Complex are proposed. The contact between the Bonze and Scalaro Units is defined by repetitions of dolomitic marbles and metabasalts; the ages of the metasediments have been assigned solely by analogy with other sediments of the Western Alps, due to the absence of fossils. The Monometamorphic Cover Complex can be considered as the autochthonous cover of the Sesia Lanzo Zone because of the primary contacts with the basement and because of the presence of preAlpine HT basement blocks in the cover sequences. 3) The pre-Alpine high temperature (HT) Basement Complex (or `'Seconda Zona Diorito-Kinzigitica''), comprises HT Hercynian rocks like kinzigites, amphibolites, granulites and calcite marbles; this Complex is always located between the Internal and the External Units and can be followed continuously for several kilometers south of the Gressoney Valley to the Orco Valley. A schematic evolution for the Sesia Lanzo Zone is proposed; based on available data together with new geochronological data, this study shows that the internal and external parts of the polymetamorphic basement of the Sesia Zone experienced different cooling histories .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Lannoituksen pitkäaikaiset kenttäkokeet: kolmen matemaattisen mallin vertailu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Vanhojen ja uusien kauralajikkeiden reagointi kuivuuteen kasvihuone- ja peltokokeissa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-intensity intermittent training in hypoxia: A double-blinded, placebo-controlled field study in youth football players. J Strength Cond Res 29(1): 226-237, 2015-This study examined the effects of 5 weeks (∼60 minutes per training, 2 d·wk) of run-based high-intensity repeated-sprint ability (RSA) and explosive strength/agility/sprint training in either normobaric hypoxia repeated sprints in hypoxia (RSH; inspired oxygen fraction [FIO2] = 14.3%) or repeated sprints in normoxia (RSN; FIO2 = 21.0%) on physical performance in 16 highly trained, under-18 male footballers. For both RSH (n = 8) and RSN (n = 8) groups, lower-limb explosive power, sprinting (10-40 m) times, maximal aerobic speed, repeated-sprint (10 × 30 m, 30-s rest) and repeated-agility (RA) (6 × 20 m, 30-s rest) abilities were evaluated in normoxia before and after supervised training. Lower-limb explosive power (+6.5 ± 1.9% vs. +5.0 ± 7.6% for RSH and RSN, respectively; both p < 0.001) and performance during maximal sprinting increased (from -6.6 ± 2.2% vs. -4.3 ± 2.6% at 10 m to -1.7 ± 1.7% vs. -1.3 ± 2.3% at 40 m for RSH and RSN, respectively; p values ranging from <0.05 to <0.01) to a similar extent in RSH and RSN. Both groups improved best (-3.0 ± 1.7% vs. -2.3 ± 1.8%; both p ≤ 0.05) and mean (-3.2 ± 1.7%, p < 0.01 vs. -1.9 ± 2.6%, p ≤ 0.05 for RSH and RSN, respectively) repeated-sprint times, whereas sprint decrement did not change. Significant interactions effects (p ≤ 0.05) between condition and time were found for RA ability-related parameters with very likely greater gains (p ≤ 0.05) for RSH than RSN (initial sprint: 4.4 ± 1.9% vs. 2.0 ± 1.7% and cumulated times: 4.3 ± 0.6% vs. 2.4 ± 1.7%). Maximal aerobic speed remained unchanged throughout the protocol. In youth highly trained football players, the addition of 10 repeated-sprint training sessions performed in hypoxia vs. normoxia to their regular football practice over a 5-week in-season period was more efficient at enhancing RA ability (including direction changes), whereas it had no additional effect on improvements in lower-limb explosive power, maximal sprinting, and RSA performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Maan fosforitilan muutos pitkäaikaisessa kenttäkokeessa hietamaalla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a drift-diffusion model we investigate the role of the self-consistent electric field in determining the impedance field of a macroscopic Ohmic (linear) resistor made by a compensated semi-insulating semiconductor at arbitrary values of the applied voltage. The presence of long-range Coulomb correlations is found to be responsible for a reshaping of the spatial profile of the impedance field. This reshaping gives a null contribution to the macroscopic impedance but modifies essentially the transition from thermal to shot noise of a macroscopic linear resistor. Theoretical calculations explain a set of noise experiments carried out in semi-insulating CdZnTe detectors.