887 resultados para full-scale testing
Resumo:
This paper reports a multi-scale study on damage evolution process and rupture of gabbro under uniaxial compression with several experimental techniques, including MTS810 testing machine, white digital speckle correlation method, and acoustic emission technique. In particular, the synchronization of the three experimental systems is realized for the study of relationship of deformation and damage at multiple scales. It is found that there are significant correlation between damage evolution at small and large length scales, and rupture at sample scale, especially it displays critical sensitivity at multiple scales and trans-scale fluctuations.
Resumo:
The fluid flow associated with micro and meso scale devices is currently of interest. Experiments were performed to study the fluid flow in meso-scale channels. A straight flow tube was fabricated with 1.0x4.0mm^2 in rectangular cross section and 200mm in length, which was made of quartz for flow visualization and PIV measurements. Reynolds numbers were ranged from 311 to over 3105. The corresponding pressure drop was from 0.65KPa to over 16.58KPa between the inlet and outlet of the tube. The micro PIV was developed to measure the velocity distribution in the tube. A set of microscope object lens was mounted ahead of CCD camera to obtain optimized optical magnification on the CCD chip. The velocity distributions near the outlet of the tube were measured to obtain full-developed flow. A CW laser beam was focused directly on the test section by a cylinder lens to form a small light sheet. Thus, high power density of light was formed on the view region. It is very important to the experiment while the velocity of the flow reaches to a few meters per second within millimeter scale. In this case, it is necessary to reduce exposure time to microseconds for PIV measurements. In the present paper, the experimental results are compared with the classical theories.
Resumo:
Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.
Resumo:
This short communication presents our recent studies to implement numerical simulations for multi-phase flows on top-ranked supercomputer systems with distributed memory architecture. The numerical model is designed so as to make full use of the capacity of the hardware. Satisfactory scalability in terms of both the parallel speed-up rate and the size of the problem has been obtained on two high rank systems with massively parallel processors, the Earth Simulator (Earth simulator research center, Yokohama Kanagawa, Japan) and the TSUBAME (Tokyo Institute of Technology, Tokyo, Japan) supercomputers.
Resumo:
A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution direct numerical simulation date at high Reynolds number ( Taylor microscale Reynolds number R-lambda = 102 similar to 216) for homogeneous, isotropic forced flow, decaying flow, and homogeneous rotating flow. Numerical testing shows that the second-order dynamic model significantly improves the correlation coefficient when compared to the first-order dynamic models.
Resumo:
Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.
Resumo:
Advances in nano-scale mechanical testing have brought about progress in the understanding of physical phenomena in materials and a measure of control in the fabrication of novel materials. In contrast to bulk materials that display size-invariant mechanical properties, sub-micron metallic samples show a critical dependence on sample size. The strength of nano-scale single crystalline metals is well-described by a power-law function, σαD-n, where D is a critical sample size and n is a experimentally-fit positive exponent. This relationship is attributed to source-driven plasticity and demonstrates a strengthening as the decreasing sample size begins to limit the size and number of dislocation sources. A full understanding of this size-dependence is complicated by the presence of microstructural features such as interfaces that can compete with the dominant dislocation-based deformation mechanisms. In this thesis, the effects of microstructural features such as grain boundaries and anisotropic crystallinity on nano-scale metals are investigated through uniaxial compression testing. We find that nano-sized Cu covered by a hard coating displays a Bauschinger effect and the emergence of this behavior can be explained through a simple dislocation-based analytic model. Al nano-pillars containing a single vertically-oriented coincident site lattice grain boundary are found to show similar deformation to single-crystalline nano-pillars with slip traces passing through the grain boundary. With increasing tilt angle of the grain boundary from the pillar axis, we observe a transition from dislocation-dominated deformation to grain boundary sliding. Crystallites are observed to shear along the grain boundary and molecular dynamics simulations reveal a mechanism of atomic migration that accommodates boundary sliding. We conclude with an analysis of the effects of inherent crystal anisotropy and alloying on the mechanical behavior of the Mg alloy, AZ31. Through comparison to pure Mg, we show that the size effect dominates the strength of samples below 10 μm, that differences in the size effect between hexagonal slip systems is due to the inherent crystal anisotropy, suggesting that the fundamental mechanism of the size effect in these slip systems is the same.
Resumo:
Face à crescente procura por outras modalidades terapêuticas que abordam o ser humano de forma holística e a introdução das mesmas no SUS, torna-se muito importante a avaliação da efetividade e segurança dessas formas de cuidado. A Homeopatia faz parte deste conjunto de terapêuticas e, para sua avaliação, pode existir a necessidade de se valer de múltiplos instrumentos para abarcar os vários aspectos de uma resposta integral ao tratamento. Este trabalho teve como objetivo identificar e elaborar categorias de análises e instrumentos que permitam avaliar e mensurar a efetividade deste tratamento, bem como testá-los, considerando-se as características desta racionalidade. Foram levantados, na literatura nacional e internacional, trabalhos sobre efetividade do tratamento homeopático, em busca da definição do estado da arte mas também dos principais problemas, limitações e possibilidades dessas avaliações tendo em vista seu resultado integral. Finda esta etapa, a pesquisa destinou-se a elaboração, proposição e testagem de uma metodologia considerada mais adequada a avaliar o tratamento homeopático nesta perspectiva. Um estudo observacional foi realizado em serviço público homeopático no município de Juiz de Fora, com tratamento individualizado, no qual foi utilizada uma estratégia de avaliação composta por três componentes: (1) avaliação de qualidade de vida pelo instrumento SF-36; (2) análises em busca de objetivar e quantificar queixas clínicas e outros atributos de natureza subjetiva (sensação de bem-estar, sono, estado cognitivo e memória, vida sexual, sensação de felicidade) por meio da utilização de uma escala visual analógica (EVA), na mensuração da intensidade e de opções fechadas, a exemplo do SF-36, na estimativa da frequência desses aspectos e (3) entrevistas qualitativas por intermédio de questionário semiestruturado, com a finalidade de abordar questões relacionadas a biopatografia e mudança da atitude vital (como pacientes enfrentam os problemas do cotidiano, fatores deflagradores das queixas, como se sentem e como reagem, além de indagar seus projetos de vida e felicidade). A aplicação do questionário SF-36 apresentou algumas dificuldades de compreensão pelos participantes, talvez devido à baixa escolaridade dos entrevistados, mas mostrou-se útil à pesquisa, embora demonstre limitações na avaliação do aspecto integral do resultado da terapêutica analisada. O acompanhamento das queixas clínicas, sensação de bem-estar, sono e estado cognitivo e memória foram captados e mensurados de forma satisfatória tanto pela EVA (intensidade dos sintomas) quanto pelas respostas fechadas para medir a frequência. Situações como as avaliações da biopatografia e da sexualidade foram insuficientes para serem adequadamente avaliadas pelo pesquisador e o paciente somente. A participação do médico assistente poderia contribuir nestes casos. Questões mais abrangentes na avaliação da mudança na atitude vital, como reação diante de fatores desequilibrantes e projeto de vida e felicidade, necessitam de metodologia qualitativa até que se possa avançar nas pesquisas à espera de soluções futuras. A combinação dessas estratégias em estudos controlados, randomizados, com amostras de magnitude satisfatória, preferencialmente em rede e que explicitem as condições nas quais o atendimento homeopático ocorreu e como se chegou a cada prescrição, podem ter utilidade para a avaliação da efetividade da dimensão integral do tratamento homeopático.
Resumo:
This is the sixth and final River Dart Scale Reading Investigation Report on the 1967 Season by the Devon River Board. The object of this investigation is to examine, by means of scale-reading, the general biology of the salmon population of the River Dart. It reviews the methods used for the collection of scales and examination of the materials. It shows the results of the survey and the number of scales studied from each of the various sea-age classes, time of running with distribution of the sea-age groups throughout the season, fish sizes and smolt ages at migration. All it summarized in tables, and figures are included plotting weight distributions for each age classes and frequency distributions. It also compares the results of previous reports and gives a full summary for the investigation (including previous reports).
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): An analysis of the principal components of surface temperature and precipitation in the western U.S. is presented. Data consist of monthly mean temperature and total precipitation for 66 climate divisions west of the Continental Divide, for the years 1931-1984. The analysis is repeated for three separate combinations of months - the water year (Oct - Sept), the cool season (Oct - Mar) and the warm season (Apr - Sept). Inspection of monthly precipitation climatology indicates that selection of these combinations of months results in very few awkward splittings of the natural precipitation seasons found in the West.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The suppression of primary productivity observed in eastern boundary ecosystems of the Pacific during El Nino episodes does not occur throughout the Gulf of California. On the contrary, analysis of the modern siliceous phytoplankton record from annually layered sediments and compilation of available primary productivity measurements indicate that production is significantly increased in the central Gulf during El Nino years compared to anti-El Nino years. Integrated observations of biological and physical variability during the spring of 1983, under the influence of the strong El Nino, show that very high primary productivity occurred along the eastern margin of the central Gulf. This resulted from the upwelling of a nutrient rich source provided by the locally formed Gulf water mass originating in the northern Gulf. Lower productivity and phytoplankton biomass were associated with the anomalous penetration of Tropical Surface Water along the western side of the Gulf.
Resumo:
We present full volumetric (three-dimensional) time-resolved (+one-dimensional) measurements of the velocity field in a large water mixing tank, allowing us to assess spatial and temporal rotational energy (enstrophy) and turbulent energy dissipation intermittency. In agreement with previous studies, highly intermittent behavior is observed, with intense coherent flow structures clustering in the periphery of larger vortices. However, further to previous work the full volumetric measurements allow us to separate out the effects of advection from other effects, elucidating not only their topology but also the evolution of these intense events, through the local balance of stretching and diffusion. These findings contribute toward a better understanding of the intermittency phenomenon, which should pave the way for more accurate models of the small-scale motions based on an understanding of the underlying flow physics.