826 resultados para foraging habits
Resumo:
The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche.
Resumo:
Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.
Resumo:
Individuals' home ranges are constrained by resource distribution and density, population size, and energetic requirements. Consequently, home ranges and habitat selection may vary between individuals of different sex and reproductive conditions. Whilst home ranges of bats are well-studied in native habitats, they are often not well understood in modified landscapes, particularly exotic plantation forests. Although Chalinolobus tuberculatus (Vespertilionidae, Chiroptera) are present in plantation forests throughout New Zealand their home ranges have only been studied in native forest and forest-agricultural mosaic and no studies of habitat selection that included males had occurred in any habitat type. Therefore, we investigated C. tuberculatus home range and habitat selection within exotic plantation forest. Home range sizes did not differ between bats of different reproductive states. Bats selected home ranges with higher proportions of relatively old forest than was available. Males selected edges with open unplanted areas within their home ranges, which females avoided. We suggest males use these edges, highly profitable foraging areas with early evening peaks in invertebrate abundance, to maintain relatively low energetic demands. Females require longer periods of invertebrate activity to fulfil their needs so select older stands for foraging, where invertebrate activity is higher. These results highlight additional understanding gained when data are not pooled across sexes. Mitigation for harvest operations could include ensuring that areas suitable for foraging and roosting are located within a radius equal to the home range of this bat species.
Resumo:
This paper describes the feeding behaviour ofRousettus leschenaulti Desmarest, 1820 on lychees, the preferred cultivated food of this bat in captive conditions. We found that feeding comprised 25–30% of the total activity of these animals in a flight cage and that feeding durations were not significantly different between two sexes. To evaluate the role of odor and vision in foraging behaviour, we provided animals with artificial lychees, real lychees and artificial lychees soaked in the juice of real lychees and we recorded the number of feeding approaches to the different “fruit” types. The results indicated that bats approached real fruit significantly more than artificial fruit, and that the number of approaches to the soaked artificial fruit was also significantly higher than to the unsoaked artificial fruit. There were no significant differences between sexes in approach rates to any “fruit” type. We discuss the role of different sensory cues in the foraging behaviour of these bats and emphasize that the olfactory cue is important in detecting food resources and discriminating between different kinds of food items.
Resumo:
The foraging behavior of greater short-nosed fruit bats (Cynopterus sphinx) on wild banana (Musa acuminata) and subsequent dispersal of seeds were studied in the Tropical Rainforest Conservation Area, Xishuangbanna Tropical Botanical Garden, Yunnan province, by direct observation of marked fruits, mist netting, and seed collection. The mean number (± SE) of individual C. sphinx captured by mist net were 2.2 ± 0.33/day and 1.4 ± 0.32/day in the rainy season (September to October) and dry season (November to December), respectively; the difference was not significant. The number of seed pellets expelled was 9.0 ± 1.12/day and 7.2 ± 1.37/day in the rainy and dry seasons respectively; again the difference was not significant. The removal curves for marked fruit were similar for 10 focal trees. Fruits were consumed heavily within two weeks after ripening and all the marked fruit were removed within one month. The difference in seed dispersal was significant between different feeding roosts indicating that patterns of seed dispersal may not be uniform. We found the seeds of M. acuminata can be dispersed by C. sphinx to a distance of about 200 m, and C. sphinx can be considered as an effective seed disperser of M. acuminata.
Resumo:
Echolocation calls of 119 bats belonging to 12 species in three families from Antillean islands of Puerto Rico, Dominica, and St. Vincent were recorded by using time-expansion methods. Spectrograms of calls and descriptive statistics of five temporal and frequency variables measured from calls are presented. The echolocation calls of many of these species, particularly those in the family Phyllostomidae, have not been described previously. The wing morphology of each taxon is described and related to the structure of its echolocation calls and its foraging ecology. Of slow aerial-hawking insectivores, the Mormoopidae and Natalidae Mormoops blainvillii, Pteronotus davyi davyi, P. quadridens fuliginosus, and Natalus stramineus stramineus can forage with great manoeuvrability in background-cluttered space (close to vegetation), and are able to hover. Pteronotus parnellii portoricensis is able to fly and echolocate in highly-cluttered space (dense vegetation). Among frugivores, nectarivores and omnivores in the family Phyllostomidae, Brachyphylla cavernarum intermedia is adapted to foraging in the edges of vegetation in background-cluttered space, while Erophylla bombifrons bombifrons, Glossophaga longirostris rostrata, Artibeus jamaicensis jamaicensis, A. jamaicensis schwartzi and Stenoderma rufum darioi are adapted to foraging under canopies in highly-cluttered space and do not have speed or efficiency in commuting flight. In contrast, Monophyllus plethodon luciae, Sturnira lilium angeli and S. lilium paulsoni are adapted to fly in highly-cluttered space, but can also fly fast and efficiently in open areas.
Resumo:
Using a broad‐band recording system (150 Hz‐100 kHz) the echolocation calls of the lesser short‐tailed bat (Mystacina tuberculata) were recorded under three very different situations: free‐flying, flying within a flight cage, and on release from the hand. Calls of bats landing and feeding on a platform in Wellington Zoo were also recorded. Both the lowest frequency and frequency of peak amplitude of calls were significantly affected by the situation under which calls were recorded. Although the calls of free‐flying bats are different from those produced by bats foraging on the ground, it is unlikely that M. tuberculata uses echolocation to locate prey on the ground. No significant differences could be found between the calls emitted by male and female bats, and no consistent relationships were obvious between temporal and spectral call characteristics. There was some evidence to suggest that individual bats could be identified by their echolocation calls.
Resumo:
Objectives To estimate the burden of disease attributed to low fruit and vegetable intake by sex and age group in South Africa for the year 2000. Design The analysis follows the World Health Organization comparative risk assessment (CRA) methodology. Populationattributable fractions were calculated from South African prevalence data from dietary surveys and applied to the revised South African burden of disease estimates for 2000. A theoretical maximum distribution of 600 g per day for fruit and vegetable intake was chosen. Monte Carlo simulationmodelling techniques were used for uncertainty analysis. Setting South Africa. Subjects Adults ≥ 15 years. Outcome measures Mortality and disability-adjusted life years (DALYs), from ischaemic heart disease, ischaemic stroke, lung cancer, gastric cancer, colorectal cancer and oesophageal cancer. Results Low fruit and vegetable intake accounted for 3.2% of total deaths and 1.1% of the 16.2 million attributable DALYs. For both males and females the largest proportion of total years of healthy life lost attributed to low fruit and vegetable intake was for ischaemic heart disease (60.6% and 52.2%, respectively). Ischaemic stroke accounted for 17.8% of attributable DALYs for males and 32.7% for females. For the related cancers, the leading attributable DALYs for men and women were oesophageal cancer (9.8% and 7.0%, respectively) and lung cancer (7.8% and 4.7%, respectively). Conclusions A high intake of fruit and vegetables can make a significant contribution to decreasing mortality from certain diseases. The challenge lies in creating the environment that facilitates changes in dietary habits such as the increased intake of fruit and vegetables.
Resumo:
E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming (runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisations but it is known that in wild type E. coli, successive run directions are actually weakly correlated, with a mean directional difference of ∼63°. We recently presented a model of the evolution of chemotactic swimming strategies in bacteria which is able to quantitatively reproduce the emergence of this correlation. The agreement between model and experiments suggests that directional persistence may serve some function, a hypothesis supported by the results of an earlier model. Here we investigate the effect of persistence on chemotactic efficiency, using a spatial Monte Carlo model of bacterial swimming in a gradient, combined with simulations of natural selection based on chemotactic efficiency. A direct search of the parameter space reveals two attractant gradient regimes, (a) a low-gradient regime, in which efficiency is unaffected by directional persistence and (b) a high-gradient regime, in which persistence can improve chemotactic efficiency. The value of the persistence parameter that maximises this effect corresponds very closely with the value observed experimentally. This result is matched by independent simulations of the evolution of directional memory in a population of model bacteria, which also predict the emergence of persistence in high-gradient conditions. The relationship between optimality and persistence in different environments may reflect a universal property of random-walk foraging algorithms, which must strike a compromise between two competing aims: exploration and exploitation. We also present a new graphical way to generally illustrate the evolution of a particular trait in a population, in terms of variations in an evolvable parameter.
Resumo:
Background Helicobacter pylori (HP) is associated with chronic gastritis and gastric cancer, and more than half of the world’s population is chronically infected. The aim of this retrospective study was to investigate whether an irregular meal pattern is associated with increased risk of gastritis and HP infection. Methods The study involved 323 subjects, divided into three groups: subjects with HP infection and gastritis, with gastritis, and a control group. Subjects were interviewed on eating habits and meal timing. Multivariate logistic regression was used to compare groups. Adjusted odds ratios (OR) were derived controlling for gender, age, stress and probiotic consumption. Results Subjects who deviated from their regular meals by 2 hours or more had a significantly higher incidence of HP infection with gastritis (adjusted OR= 13.3, 95% CI 5.3–33.3, p<0.001) and gastritis (adjusted OR=6.1, 95% CI 2.5–15.0, p<0.001). Subjects who deviated their meals by 2 hours or more, twice or more per week, had an adjusted OR of 6.3 and 3.5 of acquiring HP infection with gastritis (95% CI 2.6–15.2, p<0.001) and gastritis (95% CI 1.5–8.5, p<0.001) respectively. Conclusion Frequent deviation in meal timing over a prolonged period appears associated with increased risk of developing HP infection and gastritis.
Resumo:
This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.
Resumo:
In this invited paper I describe some personal views on the research field of conceptual modelling. I argue that the field has become entrenched in some “bad habits” that usually emerge in evolved paradigms and that we need to proactively pursue a dual research strategy incorporating new and different avenues that lead us to novel and impactful research contexts of conceptual modelling. I provide a framework that can guide this exploration and finish with some recommendations about how conceptual modelling research programs could proceed.
Resumo:
In parts of the Indo-Pacific, large-scale exploitation of the green turtle Chelonia mydas continues to pose a serious threat to the persistence of this species; yet very few studies have assessed the pattern and extent of the impact of such harvests. We used demographic and genetic data in an age-based model to investigate the viability of an exploited green turtle stock from Aru, south-east Indonesia. We found that populations are decreasing under current exploitation pressures. The effects of increasingly severe exploitation activities at foraging and nesting habitat varied depending on the migratory patterns of the stock. Our model predicted a rapid decline of the Aru stock in Indonesia under local exploitation pressure and a shift in the genetic composition of the stock. We used the model to investigate the influence of different types of conservation actions on the persistence of the Aru stock. The results show that local management actions such as nest protection and reducing harvests of adult nesting and foraging turtles can have considerable conservation outcomes and result in the long-term persistence of genetically distinct management units. © 2010 The Authors. Animal Conservation © 2010 The Zoological Society of London.
Resumo:
Objective Driver sleepiness contributes substantially to road crash incidents. Simulator and on-road studies clearly reveal an impairing effect from sleepiness on driving ability. However, the degree to which drivers appreciate the dangerousness of driving while sleepy is somewhat unclear. This study sought to determine drivers’ on-road experiences of sleepiness, their prior sleep habits, and personal awareness of the signs of sleepiness. Methods Participants were a random selection of 92 drivers travelling on a major highway in the state of Queensland, Australia, who were stopped by police as part of routine drink driving operations. Participants completed a brief questionnaire that included demographic information, sleepy driving experiences (signs of sleepiness and on-road experiences of sleepiness), and prior sleep habits. A modified version of the Karolinska Sleepiness Scale (KSS) was used to assess subjective sleepiness in the 15 minutes prior to being stopped by police. Results Participants rating of subjective sleepiness were quite low, with 90% reporting being alert to extremely alert on the KSS. Participants were reasonably aware of the signs of sleepiness, with many signs of sleepiness associated with on-road experiences of sleepiness. Additionally, the number of hours spent driving was positively correlated with the drivers’ level of sleep debt. Conclusions The results suggest the participants had moderate experience of driving while sleepy and many were aware of the signs of sleepiness. The relationship between driving long distances and increased sleep debt is a concern for road safety – increased education regarding the dangers of sleepy driving seems warranted.
Resumo:
"We live in times in which unlearning has become as important as learning. Dan Pink has called these times the Conceptual Age,i to distinguish them from the Knowledge/Information Age in which many of us were born and educated. Before the current Conceptual Age, the core business of learning was the routine accessing of information to solve routine problems, so there was real value in retaining and reusing the templates taught to us at schools and universities. What is different about the Conceptual Age is that it is characterised by new cultural forms and modes of consumption that require us to unlearn our Knowledge/Information Age habits to live well in our less predictable social world. The ‘correct’ way to write, for example, is no longer ‘correct’ if communicating by hypertext rather than by essay or letter. And who would bother with an essay or a letter or indeed a pen these days? Whether or not we agree that the Conceptual Age, amounts to the first real generation gap since rock and roll, as Ken Robinson claims,ii it certainly makes unique demands of educators, just as it makes unique demands of the systems, strategies and sustainability of organisations. Foremost among these demands, according to innovation analyst Charlie Leadbeater,iii is to unlearn the idea that we are becoming a more knowledgeable society with each new generation. If knowing means being intimately familiar with the knowledge embedded in the technologies we use in our daily lives, then, Leadbeater says, we have never been more ignorant.iv He reminds us that our great grandparents had an intimate knowledge of the technologies around them, and had no problem with getting the butter churn to work or preventing the lamp from smoking. Few of us would know what to do if our mobile phones stopped functioning, just as few of us know what is ‘underneath’ or ‘behind’ the keys of our laptops. Nor, indeed, do many of us want to know. But this means that we are all very quickly reduced to the quill and the lamp if we lose our power sources or if our machines cease to function. This makes us much more vulnerable – as well as much more ignorant in relative terms – than our predecessors."