836 resultados para factor analytic model
Resumo:
Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chloroquine, due to its basic properties, has been shown to prevent the release of iron from holotransferrin, thereby interfering with normal iron metabolism in a variety of cell types. We have studied the effects of chloroquine on the evolution of experimental paracoccidioidomycosis by evaluating the viable fungal recovery from lung, liver and spleen from infected mice and H2O2, NO production, tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, IL-10 levels and transferrin receptor (TfR) expression from uninfected and infected peritoneal macrophages. Chloroquine caused a significant decrease in the viable fungal recovery from all organs tested, during all periods of evaluation. Peritoneal macrophages from chloroquine-treated infected mice showed higher H2O2 production and TfR expression, and decreased levels of NO, endogenous and stimulated-TNF-alpha, IL-6 and IL-10 during the three evaluated periods. However, despite its suppressor effects on the macrophage function, the chloroquine therapeutic effect upon murine paracoccidioidomycosis was probably due to its effect on iron metabolism, blocking iron uptake by cells, and consequently restricting iron to fungus growth and survival.
Resumo:
Background: Bacterial constituents, such as Gram-negative derived lipopolysaccharide (LPS), can initiate inflammatory bone loss through induction of host-derived inflammatory cytokines. The aim of this study was to establish a model of aggressive inflammatory alveolar bone loss in rats using LPS derived from the periodontal pathogen Actinobacillus actinomycetemcomitans.Methods: Eighteen female Sprague-Dawley rats were divided into LPS test (N = 12) and saline control (N = 6) groups. All artimals received injections to the palatal molar gingiva three times per week for 8 weeks. At 8 weeks, linear and volumetric alveolar bone loss was measured by micro-computed tomography (mu CT). The prevalence of inflammatory infiltrate, proinflammatory cytokines, and osteoclasts was assessed from hematoxylin and eosin, immunohistochemical, or tartrate-resistant acid phosphatase (TRAP)-stained sections. Statistical analysis was performed.Results: A. actinomycetemcomitans LPS induced severe bone loss over 8 weeks, whereas control groups were unchanged. Linear and volumetric analysis of maxillae by mu CT indicated significant loss of bone with LPS, administration. Histologic examination revealed increased inflammatory infiltrate, significantly increased immunostaining for interleukin IL-6 and -1 beta and tumor necrosis factor-alpha, and more TRAP-positive osteoclasts in the LPS group compared to controls.Conclusion: Oral injections of LPS derived from the periodontal pathogen A. actinomycetemcomitans can induce severe alveolar bone loss and proinflammatory cytokine production in rats by 8 weeks.
Resumo:
We investigate the analytic properties of finite-temperature self-energies of bosons interacting with fermions at one-loop order. A simple boson-fermion model was chosen due to its interesting features of having two distinct couplings of bosons with fermions. This leads to a quite different analytic behavior of the bosons self-energies as the external momentum K-mu=(k(0),k) approaches zero in the two possible limits. It is shown that the plasmon and Debye masses are consistently obtained at the pole of the corrected propagator even when the self-energy is analytic at the origin in the frequency-momentum space.
Resumo:
The main properties of realistic models for manganites are studied using analytic mean-field approximations and computational numerical methods, focusing on the two-orbital model with electrons interacting through Jahn-Teller (JT) phonons and/or Coulombic repulsions. Analyzing the model including both interactions by the combination of the mean-field approximation and the exact diagonalization method, it is argued that the spin-charge-orbital structure in the insulating phase of the purely JT-phononic model with a large Hund couphng J(H) is not qualitatively changed by the inclusion of the Coulomb interactions. As an important application of the present mean-held approximation, the CE-type antiferromagnetic state, the charge-stacked structure along the z axis, and (3x(2) - r(2))/(3y(2) - r(2))-type orbital ordering are successfully reproduced based on the JT-phononic model with large JH for the half-doped manganite, in agreement with recent Monte Carlo simulation results. Topological arguments and the relevance of the Heisenberg exchange among localized t(2g) spins explains why the inclusion of the nearest-neighbor Coulomb interaction does not destroy the charge stacking structure. It is also verified that the phase-separation tendency is observed both in purely JT-phononic (large JH) and purely Coulombic models in the vicinity of the hole undoped region, as long as realistic hopping matrices are used. This highlights the qualitative similarities of both approaches and the relevance of mixed-phase tendencies in the context of manganites. In addition, the rich and complex phase diagram of the two-orbital Coulombic model in one dimension is presented. Our results provide robust evidence that Coulombic and JT-phononic approaches to manganites are not qualitatively different ways to carry out theoretical calculations, but they share a variety of common features.
Resumo:
Heat capacities of binary aqueous solutions of different concentrations of sucrose, glucose, fructose, citric acid, malic acid, and inorganic salts were measured with a differential scanning calorimeter in the temperature range from 5degreesC to 65degreesC. Heat capacity increased with increasing water content and increasing temperature. At low concentrations, heat capacity approached that of pure water, with a less pronounced effect of temperature, and similar abnormal behavior of pure water with a minimum around 30degreesC-40degreesC. Literature data, when available agreed relatively well with experimental values. A correction factor, based on the assumption of chemical equilibrium between liquid and gas phase in the Differential Scanning Calorimeter, was proposed to correct for the water evaporation due to temperature rise. Experimental data were fitted to predictive models. Excess molar heat capacity was calculated using the Redlich-Kister equation to represent the deviation from the additive ideal model.
Resumo:
We consider an SU(3)L x U(1)N model for the electroweak interactions which includes extra charged leptons which do not mix with the known leptons. These new leptons couple to Z0 only through vector currents. We consider constraints on the mass of one of these leptons coming from the Z0 width and from the muon (g - 2) factor. The last one is less restrictive than the former.
Resumo:
We carry out a numerical and analytic analysis of the Yang-Lee zeros of the ID Blume-Capel model with periodic boundary conditions and its generalization on Feynman diagrams for which we include sums over all connected and nonconnected rings for a given number of spins. In both cases, for a specific range of the parameters, the zeros originally on the unit circle are shown to depart from it as we increase the temperature beyond some limit. The curve of zeros can bifurcate- and become two disjoint arcs as in the 2D case. We also show that in the thermodynamic limit the zeros of both Blume-Capel models on the static (connected ring) and on the dynamical (Feynman diagrams) lattice tend to overlap. In the special case of the 1D Ising model on Feynman diagrams we can prove for arbitrary number of spins that the Yang-Lee zeros must be on the unit circle. The proof is based on a property of the zeros of Legendre polynomials.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This model connects directly the radar reflectivity data and hydrological variable runoff. The catchment is discretized in pixels (4 Km × 4 Km) with the same resolution of the CAPPI. Careful discretization is made so that every grid catchment pixel corresponds precisely to CAPPI grid cell. The basin is assumed a linear system and also time invariant. The forecast technique takes advantage of spatial and temporal resolutions obtained by the radar. The method uses only the measurements of the factor reflectivity distribution observed over the catchment area without using the reflectivity - rainfall rate transformation by the conventional Z-R relationships. The reflectivity values in each catchment pixel are translated to a gauging station by using a transfer function. This transfer function represents the travel time of the superficial water flowing through pixels in the drainage direction ending at the gauging station. The parameters used to compute the transfer function are concentration time and the physiographic catchment characteristics. -from Authors
Resumo:
Granulocyte colony-stimulating factor (G-CSF) acts on precursor hematopoietic cells to control the production and maintenance of neutrophils. Recombinant G-CSF (re-G-CSF)is used clinically to treat patients with neutropenia and has greatly reduced the infection risk associated with bone marrow transplantation. Cyclic hematopoiesis, a stem cell defect characterized by severe recurrent neutropenia, occurs in man and grey collie dogs, and can be treated by administration of re-G-CSF. Availability of the rat G-CSF cDNA would benefit the use of rats as models of gene therapy for the treatment of cyclic hematopoiesis. In preliminary rat experiments, retroviral-mediated expression of canine G-CSF caused neutralizing antibody formation which precluded long-term increases in neutrophil counts. To overcome this problem we cloned the rat G-CSF cDNA from RNA isolated from skin fibroblasts. The rat G-CSF sequence shared a high degree of identity in both the coding and non-coding regions with both the murine G-CSF (85%) and human G-CSF (74%). The signal peptides of murine and human G-CSF both contained 30 amino acids (aa), whereas the deduced signal sequence for rat G-CSF possessed 21 aa. A retrovirus encoding the rat G-CSF cDNA synthesized bioactive G-CSF from transduced vascular smooth muscle cells.
Resumo:
The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.