917 resultados para ethyl diazoacetate
Resumo:
We wish to report here our initial efforts toward the total synthesis of the potent antitumor agent dictyostatin, describing a short and efficient synthesis of the C11-C23 fragment. ( (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
Reaction of VOCl(2) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives in ethanol gave as products [VO(H2Am4DH) Cl(2)] (1), [VO(H2Am4Me) Cl(2)] center dot 1/2HCl (2), [VO(H2Am4Et) Cl(2)] center dot HCl (3) and [VO(2Am4Ph) Cl] (4). Upon the dissolution of 1-4 in water, oxidation immediately occurs with the formation of [VO(2)(2Am4DH)] (5), [VO(2)(2Am4Me)] (6), [VO(2)(2Am4Et)] (7) and [VO(2)(2Am4Ph)] (8). The crystal and molecular structures of 5 and 6 were determined. Complexes 5-8 inhibited glycerol release in a similar way to that observed with insulin but showed a low enhancing effect on glucose uptake by rat adipocytes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Gamma-lactams and bicyclic oxazolidines are important structural frameworks in both synthetic organic chemistry and related pharmacological fields. These heterocycles can be prepared by the rhodium-catalyzed carbonylation of unsaturated amines. In this work, allylaminoalcohols, derived from the aminolysis of cyclohexene oxide, styrene oxide, (R)-(+)-limonene oxide, and ethyl-3-phenyl-glicidate, were employed as substrates. These allylaminoalcohols were carbonylated by employing RhClCO(PPh3)(2) as a precatalyst under varying CO/H-2 mixtures, and moderate to excellent yields were obtained, depending on the substrate used. The results indicated that an increase in the chelating ability of the substrate (-OH and -NHR moieties) decreased the conversion and selectivity of the ensuing reaction. Additionally, the selectivity could be optimized to favor either the gamma-lactams or the oxazolidines by controlling the CO/H-2 ratio. A large excess of CO provided a lactam selectivity of up to 90%, while a H-2-rich gas mixture improved the selectivity for oxazolidines, resulting from hydroformylation/cyclization. Studies of the reaction temperature indicated that an undesirable substrate deallylation reaction occurs at higher temperature (>100 degrees C). Further, kinetic studies have indicated that the oxazolidines and gamma-lactams were formed through parallel routes. Unfortunately, the mechanism for oxazolidines formation is not yet well understood. However, our results have led us to propose a catalytic cycle based on hydroformylation/acetalyzation pathways. The gamma-lactams formation follows a carbonylation route, mediated by a rhodium-carbamoylic intermediate, as previously reported. To this end, we have been able to prepare and isolate the corresponding iridium complex, which could be confirmed by X-ray crystallographic analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of the macrolactone core of migrastatin 2, its potent anti-metastasis analogue 34, and ester derivatives 35 and 38 are reported. The approach involves the use of a dihydroxylation reaction to establish the desired C-8 stereocenter followed by a metathesis cyclization reaction. The effects of the compounds on the migration and invasion of human breast cancer cells were evaluated by using the wound-healing and the Boyden-chamber cell-migration and cell-invasion assays. The results revealed a high potency of the macrolactones 2 and 34 and the ester analogues 35 and 38, which suggests they have potential as antimetastatic agents.
Resumo:
A very unusual triple structural transition pattern below room temperature was observed for the antifilarial drug diethylcarbamazine citrate. Besides the first thermal, crystallographic, and vibrational investigations of this first-line drug used in clinical treatment for lymphatic filariasis, a noteworthy behavior with three structural transformations as a function of temperature was demonstrated by differential scanning calorimetry, Raman spectroscopy, and single-crystal X-ray diffractometry. Our X-ray data on single crystals allow for a complete featuring and understanding of all transitions, since the four structures associated with the three solid-solid phase transformations were accurately determined. Two of three structural transitions show an order-disorder mechanism and temperature hysteresis with exothermic peaks at 224 K (T(1)`) and 213 K (T(2)`) upon cooling and endothermic ones at 248 K (T(1)) and 226 K (T(2)) upon heating. The other transition occurs at 108 K (T(3)) and it is temperature-rate sensitive. Molecular displacements onto the (010) plane and conformational changes of the diethylcarbamazine backbone as a consequence of the C-H center dot center dot center dot N hydrogen bonding formation/cleavage between drug molecules explain the mechanism of the transitions at T(1)`/T(2). However, such changes are observed only on alternate columns of the drug intercalated by citrate chains, which leads to a doubling of the lattice period along the a axis of the 235 K structure with respect to the 150 and 293 K structures. At T(2)`/T(1), these structural alterations occur in all columns of the drug. At T(3), there is a rotation on the axis of the N-C bond between the carbamoyl moiety and an ethyl group of one crystallographically independent diethylcarbamazine molecule besides molecular shifts and other conformational alterations. The impact of this study is based on the fascinating finding in which the versatile capability of structural adaptation dependent on the thermal history was observed for a relatively simple organic salt, diethylcarbamazine citrate.
Resumo:
A mild new procedure for preparing protected peptide thioesters, based oil Ca(2+)-assisted thiolysis of peptide-Kaiser oxime resin (KOR) linkage, is described. Ac-Ile-Ser(Bzl)-Asp(OcHx)-SR (Ac: acetyl; Bzl: benzyl; cHx: cyclohexyl), model peptide, was readily released from the resin by incubating the peptide-KOR at 60 degrees C in mixtures of DMF with n-butanethiol [R = (CH(2))(3)CH(3)] or ethyl 3-mercaptopropionate [R = (CH(2))(2)COOCHCH(3)] containing Ca(CH(3)COO)(2). After serine and aspartic acid side-chain deprotection under acid conditions, Ac-Ile-Ser-Asp-S(CH(2))(2)COOCH(2)CH(3) was successfully obtained with good quality and high yield. This type of C-terminal modified peptide may act as an excellent acyl donor in peptide segment condensation by the thioester method, native chemical ligation and enzymatic methods. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
There has been increasing interest in the gas-phase reactivity of alkyl nitrates because of their well-known applications as explosives and because of then role in atmospheric and in marine processes This manuscript describes an experimental study by FT-ICR techniques of the gas-phase reactions of OH(-) and F(-) with methyl and ethyl Innate For methyl nitrate, the main reaction channel is found to be an elimination process promoted by abstraction of an a proton from the methyl group. Nucleophilic displacement of nitrate anion through an S(N)2 process at the carbon center Is also found to he an important reaction channel with methyl nitrate In ethyl nitrate, Ruination of NO(3)(-) is greatly enhanced and this is attributed to the ease of an E2-type elimination process promoted by proton abstraction at the beta position of the ethyl group. Theoretical calculations at the MP2/6-311+G(3df,2p)//MP2/6-31+G(d) level of theory ale consistent with the relative importance of the reaction channels and suggest that these reactions proceed through a double well potential The calculations also predict that nucleophilic attack by OH(-) at the nitrogen center (Sn2@N) is energetically the rueful ad pathway but experiments with (18)OH(-) showed no evidence for this channel. Single-point calculations reveal a strong preference for approach to the emboli center and may explain the lack of reactivity at the nitrogen center. Calculations were also carried out or NH(2)(-) and SH(-) to establish the reactivity pattern to provide a better understanding of environmentally relevant nitrate esters.
Resumo:
Characterization of Sterculia striate polysaccharide (SSP) films adsorbed onto Si wafers from solutions prepared in ethyl methyl imidazolium acetate (EmimAc), water or NaOH 0.01 mol/L was systematically studied by means of ellipsometry, atomic force microscopy and contact angle measurements. SSP adsorbed from EmimAc onto Si wafer as homogeneous monolayers (similar to 0.5 nm thick), while from water or NaOH 0.01 mol/L SSP formed layers of similar to 4.0 nm and similar to 1.5 nm thick, respectively. Surface energy values found for SSP adsorbed from EmimAc or water were 68 +/- 2 mJ/m(2) and 65 +/- 2 mJ/m(2), respectively, whereas from NaOH it amounted to 57 +/- 3 mJ/m(2). The immobilization of lysozyme (LYS) onto SSP films was also investigated. The mean thickness of LYS (d(LYS)) immobilized onto SSP films adsorbed from each solvent tended to increase with the decrease of gamma(P)(S) and gamma(total)(S). However, the enzymatic activity of LYS molecules was higher when they were immobilized onto SSP films with higher gamma(P)(S) and gamma(total)(S) values. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A variety of alpha,beta-unsaturated aryl esters were prepared by the direct reaction of unsymmetrical aryltellurides and ethyl acrylate, catalyzed by PdCl(2) via a Heck cross-coupling reaction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain (Zhou et al. Chem. Eur. J. 2005, 11, 752.). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalky-lammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.
Resumo:
In the scope of our ongoing researchers on antioxidant compounds, twenty four extracts and fractions obtained from Piper arboreum Aublet and Piper tuberculatum Jacq. (Piperaceae) were screened for radical scavenging capacity (RSC) by using DPPH colorimetric assay. The strongest activity was found in ethyl acetate fractions from the leaves of P. arboreum IC(50) = 5.70 mu g/mL) and P. tuberculatum IC(50) = 8.40 mu g/mL). Hydromethanol fractions of the leaves of P. tuberculatum and P. arboreum showed moderate RSC, with values of IC(50) (mu g/mL) of 11.9 and 19.2, respectively. Additionally, a brief phytochemical study of the ethyl acetate fraction of P. arboreum leaves affording quercetin (1) and quercitrin (2), two flavonols with antioxidant activity previously described in the literature.
Resumo:
The mechanism and the energy profile of the gas-phase reaction that mimics esterification under acidic conditions have been investigated at different levels of theory. These reactions are known to proceed with rate constants close to the collision limit in the gas-phase and questions have been raised as to whether the typical addition-elimination mechanism via a tetrahedral intermediate can explain the ease of these processes. Because these reactions are common to many organic and biochemical processes it is important to understand the intrinsic reactivity of these systems. Our calculations at different levels of theory reveal that a stepwise mechanism via a tetrahedral species is characterized by energy barriers that are inconsistent with the experimental results. For the thermoneutral exchange between protonated acetic acid and water and the exothermic reaction of protonated acetic acid and methanol our calculations show that these reactions proceed initially by a proton shuttle between the carbonyl oxygen and the hydroxy oxygen of acetic acid mediated by water, or methanol, followed by displacement at the acylium ion center. These findings suggest that the reactions in the gas-phase should be viewed as an acylium ion transfer reaction. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1596-1606, 2011
Resumo:
The photocatalytic degradation of Janus Green B azo dye over silver modified titanium dioxide films was investigated by surface-enhanced Raman spectroscopy (SERS). An optimized SERS-active substrate was employed to study the photodegradation reaction of Janus Green B. Considering that photocatalytic degradation processes of organic molecules adsorbed on TiO2 might involve either their oxidation or reduction reaction, the vibrational spectroelectrochemical study of the dye was also performed, in order to clarify the transformations involved in initial steps of its photochemical decomposition. In order to understand the changes in Raman spectra of Janus Green B after photodegradation and/or electrochemical processes, a vibrational assignment of the main Raman active modes of the dye was carried out, based on a detailed resonance Raman profile. Products formed by electrochemical and photochemical degradation processes were compared. The obtained results revealed that the first steps of the degradation process of Janus Green B involve a reductive mechanism. (C) 2007 Published by Elsevier B.V.
Resumo:
Thioredoxin (Trx1), a very important protein for regulating intracellular redox reactions, was immobilized on iron oxide superparamagnetic nanoparticles previously coated with 3-aminopropyltriethoxysilane (APTS) via covalent coupling using the EDC (1-ethyl-3-{3-dimethylaminopropyl}carbodiimide) method. The system was extensively characterized by atomic force microscopy, vibrational and magnetic techniques. In addition, gold nanoparticles were also employed to probe the exposed groups in the immobilized enzyme based on the SERS (surface enhanced Raman scattering) effect, confirming the accessibility of the cysteines residues at the catalytic site. For the single coated superparamagnetic nanoparticle, by monitoring the enzyme activity with the Ellman reagent, DTNB=5,5`-dithio-bis(2-15 nitrobenzoic acid), an inhibitory effect was observed after the first catalytic cycle. The inhibiting effect disappeared after the application of an additional silicate coating before the AFTS treatment, reflecting a possible influence of unprotected iron-oxide sites in the redox kinetics. In contrast, the doubly coated system exhibited a normal in-vitro kinetic activity, allowing a good enzyme recovery and recyclability. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This paper studies the selectivity of Well-defined Au and Ag nanostructures as substrates for the SERS, (surface-enhanced Raman scattering) detection of simazine (6-chloro-N,N`-diethyl-1,3,5-triazine-2,4-diamine) and atrazine (6-chloro-N-ethyl-N`-isopropyl-1,3,5-triazine-2,4-diamine). Our data showed that simazine and atrazine displayed similar SERS spectra when the Au was employed as substrate. Conversely, distinct SERS signatures were obtained upon the utilization of Ag substrates. Density functional theory (DFT) calculations and vibrational assignments suggested that, while simazine and atrazine adsorbed on Au via the N3 position of the triazine ring, simazine adsorbed on Ag via N3 and atrazine via N5. The results presented herein demonstrated that the adsorption geometry of analyte molecules can play a central role over substrate selectivity in SERS, which is particularly important in applications involving ultrasensitive analysis of mixtures containing structurally similar molecules.