854 resultados para dynamic modeling and simulation
Resumo:
The potential for the use of DEA and simulation in a mutually supporting role in guiding operating units to improved performance is presented. An analysis following a three-stage process is suggested. Stage one involves obtaining the data for the DEA analysis. This can be sourced from historical data, simulated data or a combination of the two. Stage two involves the DEA analysis that identifies benchmark operating units. In the third stage simulation can now be used in order to offer practical guidance to operating units towards improved performance. This can be achieved by the use of sensitivity analysis of the benchmark unit using a simulation model to offer direct support as to the feasibility and efficiency of any variations in operating practices to be tested. Alternatively, the simulation can be used as a mechanism to transmit the practices of the benchmark unit to weaker performing units by building a simulation model of the weaker unit to the process design of the benchmark unit. The model can then compare performance of the current and benchmark process designs. Quantifying improvement in this way provides a useful driver to any process change initiative that is required to bring the performance of weaker units up to the best in class. © 2005 Operational Research Society Ltd. All rights reserved.
Resumo:
The investigation of insulation debris generation, transport, and sedimentation becomes more important with regard to reactor safety research for pressurized water reactors and boiling water reactors when considering the long-term behavior of emergency core coolant systems during all types of loss-of-coolant accidents (LOCAs). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle populations that varies with size, shape, consistency, and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are, for example, the particle load on strainers and corresponding pressure drop, the sedimentation of the insulation debris in a water pool, and its possible resuspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Sciences Zittau/Görlitz. The project deals with the experimental investigation and the development of computational fluid dynamics (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University of Applied Sciences Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.
Resumo:
The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.
Resumo:
The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The simulation of a power system such as the More Electric Aircraft is a complex problem. There are conflicting requirements of the simulation, for example in order to reduce simulation run-times, power ratings that need to be established over long periods of the flight can be calculated using a fairly coarse model, whereas power quality is established over relatively short periods with a detailed model. An important issue is to establish the requirements of the simulation work at an early stage. This paper describes the modelling and simulation strategy adopted for the UK TIMES project, which is looking into the optimisation of the More Electric Aircraft from a system level. Essentially four main requirements of the simulation work have been identified, resulting in four different types of simulation. Each of the simulations is described along with preliminary models and results.
Resumo:
The performances of L-band EDFA are modeled and analyzed, based on C-band EDFA, through variation of pump power, ion concentration and fiber length. The fiber length promises higher performance than others. © 2005 Optical Society of America.
Resumo:
Self-awareness and self-expression are promising architectural concepts for embedded systems to be equipped with to match them with dedicated application scenarios and constraints in the avionic and space-flight industry. Typically, these systems operate in largely undefined environments and are not reachable after deployment for a long time or even never ever again. This paper introduces a reference architecture as well as a novel modelling and simulation environment for self-aware and self-expressive systems with transaction level modelling, simulation and detailed modelling capabilities for hardware aspects, precise process chronology execution as well as fine timing resolutions. Furthermore, industrial relevant system sizes with several self-aware and self-expressive nodes can be handled by the modelling and simulation environment.
Resumo:
The deliberate addition of Gaussian noise to cochlear implant signals has previously been proposed to enhance the time coding of signals by the cochlear nerve. Potentially, the addition of an inaudible level of noise could also have secondary benefits: it could lower the threshold to the information-bearing signal, and by desynchronization of nerve discharges, it could increase the level at which the information-bearing signal becomes uncomfortable. Both these effects would lead to an increased dynamic range, which might be expected to enhance speech comprehension and make the choice of cochlear implant compression parameters less critical (as with a wider dynamic range, small changes in the parameters would have less effect on loudness). The hypothesized secondary effects were investigated with eight users of the Clarion cochlear implant; the stimulation was analogue and monopolar. For presentations in noise, noise at 95% of the threshold level was applied simultaneously and independently to all the electrodes. The noise was found in two-alternative forced-choice (2AFC) experiments to decrease the threshold to sinusoidal stimuli (100 Hz, 1 kHz, 5 kHz) by about 2.0 dB and increase the dynamic range by 0.7 dB. Furthermore, in 2AFC loudness balance experiments, noise was found to decrease the loudness of moderate to intense stimuli. This suggests that loudness is partially coded by the degree of phase-locking of cochlear nerve fibers. The overall gain in dynamic range was modest, and more complex noise strategies, for example, using inhibition between the noise sources, may be required to get a clinically useful benefit. © 2006 Association for Research in Otolaryngology.
Resumo:
Dance videos are interesting and semantics-intensive. At the same time, they are the complex type of videos compared to all other types such as sports, news and movie videos. In fact, dance video is the one which is less explored by the researchers across the globe. Dance videos exhibit rich semantics such as macro features and micro features and can be classified into several types. Hence, the conceptual modeling of the expressive semantics of the dance videos is very crucial and complex. This paper presents a generic Dance Video Semantics Model (DVSM) in order to represent the semantics of the dance videos at different granularity levels, identified by the components of the accompanying song. This model incorporates both syntactic and semantic features of the videos and introduces a new entity type called, Agent, to specify the micro features of the dance videos. The instantiations of the model are expressed as graphs. The model is implemented as a tool using J2SE and JMF to annotate the macro and micro features of the dance videos. Finally examples and evaluation results are provided to depict the effectiveness of the proposed dance video model.
Resumo:
Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.