877 resultados para dynamic factor models
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
Variations in demographic rates due to differential resource allocation between individuals are important considerations in the development of accurate population dynamic models. Systematic harvesting can alter age structure and/or reduce population density, conferring indirect positive benefits on the source population as a result of a consequent redistribution of resources between the remaining individuals. Independently of effects mediated through changes in density and competition, demographic rates can also be influenced by within-individual competition for resources. Harvesting dependent life stages can reduce an individual's current reproductive costs, allowing increased investment in its future fecundity and survival. Although such changes in demographic rates are well known, there has been little exploration of the potential impact on population dynamics. We use empirical data collected from a successfully reintroduced population of the Mauritius kestrel Falco punctatus to explore the population consequences of manipulating reproductive effort through harvesting. Consequent increases in an individual's future fecundity and survival allow source populations to withstand longer and more intensive harvesting regimes without being exposed to an increase in extinction risk, increasing maximum sustainable yields. These effects may also buffer populations against the impacts of stochastic events, but directional shifts in environmental conditions that increase reproductive costs may have detrimental population-level effects.
Resumo:
If the fundamental precepts of Farming Systems Research were to be taken literally then it would imply that for each farm 'unique' solutions should be sought. This is an unrealistic expectation, but it has led to the idea of a recommendation domain, implying creating a taxonomy of farms, in order to increase the general applicability of recommendations. Mathematical programming models are an established means of generating recommended solutions, but for such models to be effective they have to be constructed for 'truly' typical or representative situations. The multi-variate statistical techniques provide a means of creating the required typologies, particularly when an exhaustive database is available. This paper illustrates the application of this methodology in two different studies that shared the common purpose of identifying types of farming systems in their respective study areas. The issues related with the use of factor and cluster analyses for farm typification prior to building representative mathematical programming models for Chile and Pakistan are highlighted. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)(1) and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.: R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data. 2000, 29, 167) 2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a. value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100,. 19398)4 of the bond dissociation energy, D-298(BrO-NO2) = 118 kJ mol(-1), corresponding to Delta H-0(circle) = 114.3 kJ mol(-1) at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing Delta H-0(circle) to an unrealistically high value (149.3 kJ mol(-1)) or by increasing
Resumo:
Strategy is a contested concept. The generic literature is characterized by a diverse range of competing theories and alternative perspectives. Traditional models of the competitive strategy of construction firms have tended to focus on exogenous factors. In contrast, the resource-based view of strategic management emphasizes the importance of endogenous factors. The more recently espoused concept of dynamic capabilities extends consideration beyond static resources to focus on the ability of firms to reconfigure their operating routines to enable responses to changing environments. The relevance of the dynamics capabilities framework to the construction sector is investigated through an exploratory case study of a regional contractor. The focus on how firms continuously adapt to changing environments provides new insights into competitive strategy in the construction sector. Strong support is found for the importance of path dependency in shaping strategic choice. The case study further suggests that strategy is a collective endeavour enacted by a loosely defined group of individual actors. Dynamic capabilities are characterized by an empirical elusiveness and as such are best construed as situated practices embedded within a social and physical context.
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Resumo:
Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.
Resumo:
Driven by a range of modern applications that includes telecommunications, e-business and on-line social interaction, recent ideas in complex networks can be extended to the case of time-varying connectivity. Here we propose a general frame- work for modelling and simulating such dynamic networks, and we explain how the long time behaviour may reveal important information about the mechanisms underlying the evolution.
Resumo:
The hierarchical and "bob" (or branch-on-branch) models are tube-based computational models recently developed for predicting the linear rheology of general mixtures of polydisperse branched polymers. These two models are based on a similar tube-theory framework but differ in their numerical implementation and details of relaxation mechanisms. We present a detailed overview of the similarities and differences of these models and examine the effects of these differences on the predictions of the linear viscoelastic properties of a set of representative branched polymer samples in order to give a general picture of the performance of these models. Our analysis confirms that the hierarchical and bob models quantitatively predict the linear rheology of a wide range of branched polymer melts but also indicate that there is still no unique solution to cover all types of branched polymers without case-by-case adjustment of parameters such as the dilution exponent alpha and the factor p(2) which defines the hopping distance of a branch point relative to the tube diameter. An updated version of the hierarchical model, which shows improved computational efficiency and refined relaxation mechanisms, is introduced and used in these analyses.
Resumo:
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
One of the most pervading concepts underlying computational models of information processing in the brain is linear input integration of rate coded uni-variate information by neurons. After a suitable learning process this results in neuronal structures that statically represent knowledge as a vector of real valued synaptic weights. Although this general framework has contributed to the many successes of connectionism, in this paper we argue that for all but the most basic of cognitive processes, a more complex, multi-variate dynamic neural coding mechanism is required - knowledge should not be spacially bound to a particular neuron or group of neurons. We conclude the paper with discussion of a simple experiment that illustrates dynamic knowledge representation in a spiking neuron connectionist system.
Resumo:
We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.
Resumo:
In this paper the implementation of dynamic data reconciliation techniques for sequential modular models is described. The paper is organised as follows. First, an introduction to dynamic data reconciliation is given. Then, the online use of rigorous process models is introduced. The sequential modular approach to dynamic simulation is briefly discussed followed by a short review of the extended Kalman filter. The second section describes how the modules are implemented. A simulation case study and its results are also presented.