996 resultados para discrete mathematics


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for simulation of acoustical bores, useful in the context of sound synthesis by physical modeling of woodwind instruments, is presented. As with previously developed methods, such as digital waveguide modeling (DWM) [Smith, Comput. Music J. 16, pp 74-91 (1992)] and the multi convolution algorithm (MCA) [Martinez et al., J. Acoust. Soc. Am. 84, pp 1620-1627 (1988)], the approach is based on a one-dimensional model of wave propagation in the bore. Both the DWM method and the MCA explicitly compute the transmission and reflection of wave variables that represent actual traveling pressure waves. The method presented in this report, the wave digital modeling (WDM) method, avoids the typical limitations associated with these methods by using a more general definition of the wave variables. An efficient and spatially modular discrete-time model is constructed from the digital representations of elemental bore units such as cylindrical sections, conical sections, and toneholes. Frequency-dependent phenomena, such as boundary losses, are approximated with digital filters. The stability of a simulation of a complete acoustic bore is investigated empirically. Results of the simulation of a full clarinet show that a very good concordance with classic transmission-line theory is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Math-Towers (www.math-towers.ca) is an online resource for students in grades 6 to 10 that supports collaborative problem-solving and investigations. This paper presents the philosophical position motivating the development of Math-Towers and describes how the site presents and motivates the mathematical challenges and supports participants' exploration and collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As they began their one-year teacher education program 138 elementary school teacher candidates completed a questionnaire designed to measure their beliefs concerning the nature of mathematics, measured on a scale from absolutist to fallibilist, and their beliefs concerning effective mathematics instruction, measured on a scale from traditional to constructivist. Interviews were conducted with volunteer questionnaire participants, with selection based on the questionnaire results and using two sets of criteria. Study 1. involved 8 teacher candidates showing distinct absolutist or fallibilist views of mathematics and individual interviews explored participants' beliefs concerning the use of information and communication technology, particularly interactive whiteboards (IWB), in the teaching and learning of mathematics. Participants with absolutist beliefs about the nature of mathematics tended to focus on the IWB as a presentation tool, while those with fallibilist beliefs appreciated the use of the IWB to support student exploration. Study 2. involved 8 teacher candidates with apparently misaligning absolutist beliefs concerning the nature of mathematics and constructivist beliefs concerning teaching. Interviews exploring participants' favoured instructional approaches, particularly those involving the use of manipulatives, showed that constructivist views involved essentially surface beliefs and that in fact manipulatives would be employed to support traditional direct instruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Architectures and methods for the rapid design of silicon cores for implementing discrete wavelet transforms over a wide range of specifications are described. These architectures are efficient, modular, scalable, and cover orthonormal and biorthogonal wavelet transform families. They offer efficient hardware utilization by exploiting a number of core wavelet filter properties and allow the creation of silicon designs that are highly parameterized, including in terms of wavelet type and wordlengths. Control circuitry is embedded within these systems allowing them to be cascaded for any desired level of decomposition without any interface glue logic. The time to produce chip designs for a specific wavelet application is typically less than a day and these are comparable in area and performance to handcrafted designs. They are also portable across a wide range of silicon foundries and suitable for field programmable gate array and programmable logic data implementation. The approach described has also been extended to wavelet packet transforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.