948 resultados para diffusive viscoelastic model, global weak solution, error estimate
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
Since the development of quantum mechanics it has been natural to analyze the connection between classical and quantum mechanical descriptions of physical systems. In particular one should expect that in some sense when quantum mechanical effects becomes negligible the system will behave like it is dictated by classical mechanics. One famous relation between classical and quantum theory is due to Ehrenfest. This result was later developed and put on firm mathematical foundations by Hepp. He proved that matrix elements of bounded functions of quantum observables between suitable coherents states (that depend on Planck's constant h) converge to classical values evolving according to the expected classical equations when h goes to zero. His results were later generalized by Ginibre and Velo to bosonic systems with infinite degrees of freedom and scattering theory. In this thesis we study the classical limit of Nelson model, that describes non relativistic particles, whose evolution is dictated by Schrödinger equation, interacting with a scalar relativistic field, whose evolution is dictated by Klein-Gordon equation, by means of a Yukawa-type potential. The classical limit is a mean field and weak coupling limit. We proved that the transition amplitude of a creation or annihilation operator, between suitable coherent states, converges in the classical limit to the solution of the system of differential equations that describes the classical evolution of the theory. The quantum evolution operator converges to the evolution operator of fluctuations around the classical solution. Transition amplitudes of normal ordered products of creation and annihilation operators between coherent states converge to suitable products of the classical solutions. Transition amplitudes of normal ordered products of creation and annihilation operators between fixed particle states converge to an average of products of classical solutions, corresponding to different initial conditions.
Resumo:
Summary PhD Thesis Jan Pollmann: This thesis focuses on global scale measurements of light reactive non-methane hydrocarbon (NMHC), in the volatility range from ethane to toluene with a special focus on ethane, propane, isobutane, butane, isopentane and pentane. Even though they only occur at the ppt level (nmol mol-1) in the remote troposphere these species can yield insight into key atmospheric processes. An analytical method was developed and subsequently evaluated to analyze NMHC from the NOAA – ERSL cooperative air sampling network. Potential analytical interferences through other atmospheric trace gases (water vapor and ozone) were carefully examined. The analytical parameters accuracy and precision were analyzed in detail. It was proven that more than 90% of the data points meet the Global Atmospheric Watch (GAW) data quality objective. Trace gas measurements from 28 measurement stations were used to derive the global atmospheric distribution profile for 4 NMHC (ethane, propane, isobutane, butane). A close comparison of the derived ethane data with previously published reports showed that northern hemispheric ethane background mixing ratio declined by approximately 30% since 1990. No such change was observed for southern hemispheric ethane. The NMHC data and trace gas data supplied by NOAA ESRL were used to estimate local diurnal averaged hydroxyl radical (OH) mixing ratios by variability analysis. Comparison of the variability derived OH with directly measured OH and modeled OH mixing ratios were found in good agreement outside the tropics. Tropical OH was on average two times higher than predicted by the model. Variability analysis was used to assess the effect of chlorine radicals on atmospheric oxidation chemistry. It was found that Cl is probably not of significant relevance on a global scale.
Resumo:
This work presents a comprehensive methodology for the reduction of analytical or numerical stochastic models characterized by uncertain input parameters or boundary conditions. The technique, based on the Polynomial Chaos Expansion (PCE) theory, represents a versatile solution to solve direct or inverse problems related to propagation of uncertainty. The potentiality of the methodology is assessed investigating different applicative contexts related to groundwater flow and transport scenarios, such as global sensitivity analysis, risk analysis and model calibration. This is achieved by implementing a numerical code, developed in the MATLAB environment, presented here in its main features and tested with literature examples. The procedure has been conceived under flexibility and efficiency criteria in order to ensure its adaptability to different fields of engineering; it has been applied to different case studies related to flow and transport in porous media. Each application is associated with innovative elements such as (i) new analytical formulations describing motion and displacement of non-Newtonian fluids in porous media, (ii) application of global sensitivity analysis to a high-complexity numerical model inspired by a real case of risk of radionuclide migration in the subsurface environment, and (iii) development of a novel sensitivity-based strategy for parameter calibration and experiment design in laboratory scale tracer transport.
Resumo:
The present thesis focuses on the problem of robust output regulation for minimum phase nonlinear systems by means of identification techniques. Given a controlled plant and an exosystem (an autonomous system that generates eventual references or disturbances), the control goal is to design a proper regulator able to process the only measure available, i.e the error/output variable, in order to make it asymptotically vanishing. In this context, such a regulator can be designed following the well known “internal model principle” that states how it is possible to achieve the regulation objective by embedding a replica of the exosystem model in the controller structure. The main problem shows up when the exosystem model is affected by parametric or structural uncertainties, in this case, it is not possible to reproduce the exact behavior of the exogenous system in the regulator and then, it is not possible to achieve the control goal. In this work, the idea is to find a solution to the problem trying to develop a general framework in which coexist both a standard regulator and an estimator able to guarantee (when possible) the best estimate of all uncertainties present in the exosystem in order to give “robustness” to the overall control loop.
Resumo:
The thesis deals with numerical algorithms for fluid-structure interaction problems with application in blood flow modelling. It starts with a short introduction on the mathematical description of incompressible viscous flow with non-Newtonian viscosity and a moving linear viscoelastic structure. The mathematical model consists of the generalized Navier-Stokes equation used for the description of fluid flow and the generalized string model for structure movement. The arbitrary Lagrangian-Eulerian approach is used in order to take into account moving computational domain. A part of the thesis is devoted to the discussion on the non-Newtonian behaviour of shear-thinning fluids, which is in our case blood, and derivation of two non-Newtonian models frequently used in the blood flow modelling. Further we give a brief overview on recent fluid-structure interaction schemes with discussion about the difficulties arising in numerical modelling of blood flow. Our main contribution lies in numerical and experimental study of a new loosely-coupled partitioned scheme called the kinematic splitting fluid-structure interaction algorithm. We present stability analysis for a coupled problem of non-Newtonian shear-dependent fluids in moving domains with viscoelastic boundaries. Here, we assume both, the nonlinearity in convective as well is diffusive term. We analyse the convergence of proposed numerical scheme for a simplified fluid model of the Oseen type. Moreover, we present series of experiments including numerical error analysis, comparison of hemodynamic parameters for the Newtonian and non-Newtonian fluids and comparison of several physiologically relevant computational geometries in terms of wall displacement and wall shear stress. Numerical analysis and extensive experimental study for several standard geometries confirm reliability and accuracy of the proposed kinematic splitting scheme in order to approximate fluid-structure interaction problems.
Resumo:
This thesis presents a process-based modelling approach to quantify carbon uptake by lichens and bryophytes at the global scale. Based on the modelled carbon uptake, potential global rates of nitrogen fixation, phosphorus uptake and chemical weathering by the organisms are estimated. In this way, the significance of lichens and bryophytes for global biogeochemical cycles can be assessed. The model uses gridded climate data and key properties of the habitat (e.g. disturbance intervals) to predict processes which control net carbon uptake, namely photosynthesis, respiration, water uptake and evaporation. It relies on equations used in many dynamical vegetation models, which are combined with concepts specific to lichens and bryophytes, such as poikilohydry or the effect of water content on CO2 diffusivity. To incorporate the great functional variation of lichens and bryophytes at the global scale, the model parameters are characterised by broad ranges of possible values instead of a single, globally uniform value. The predicted terrestrial net uptake of 0.34 to 3.3 Gt / yr of carbon and global patterns of productivity are in accordance with empirically-derived estimates. Based on the simulated estimates of net carbon uptake, further impacts of lichens and bryophytes on biogeochemical cycles are quantified at the global scale. Thereby the focus is on three processes, namely nitrogen fixation, phosphorus uptake and chemical weathering. The presented estimates have the form of potential rates, which means that the amount of nitrogen and phosphorus is quantified which is needed by the organisms to build up biomass, also accounting for resorption and leaching of nutrients. Subsequently, the potential phosphorus uptake on bare ground is used to estimate chemical weathering by the organisms, assuming that they release weathering agents to obtain phosphorus. The predicted requirement for nitrogen ranges from 3.5 to 34 Tg / yr and for phosphorus it ranges from 0.46 to 4.6 Tg / yr. Estimates of chemical weathering are between 0.058 and 1.1 km³ / yr of rock. These values seem to have a realistic order of magnitude and they support the notion that lichens and bryophytes have the potential to play an important role for global biogeochemical cycles.
Resumo:
Besides providing effective analgesia, thoracic epidural anesthesia (TEA) has been shown to decrease perioperative morbidity and mortality. Because of its vasodilatory properties in association with the sympathetic blockade, however, TEA may potentially aggravate cardiovascular dysfunctions resulting from sepsis and systemic inflammatory response syndrome. The objective of the present study was to assess the effects of TEA on hemodynamics, global oxygen transport, and renal function in ovine endotoxemia. After a baseline measurement in healthy sheep (n = 18), Salmonella typhosa endotoxin was centrally infused at incremental doses to induce and maintain a hypotensive-hypodynamic circulation using an established protocol. The animals were then randomly assigned to one of two groups. In the treatment group, continuous TEA was initiated with 0.1 mL.kg of 0.125% bupivacaine at the onset of endotoxemia and maintained with 0.1 mL.kg.h. In the control group, the same amount of isotonic sodium chloride solution was injected through the epidural catheter. In the animals surviving the entire experiment (n = 7 per group), cardiac index and mean arterial pressure decreased in a dose-dependent manner during endotoxin infusion. In the TEA group, neither systemic hemodynamics nor global oxygen transport were impaired beyond the changes caused by endotoxemia itself. Urinary output was increased in the TEA group as compared with the control group (P < 0.05). In this model of endotoxic shock, TEA improved renal perfusion without affecting cardiopulmonary hemodynamics and global oxygen transport.
Resumo:
The construction of a reliable, practically useful prediction rule for future response is heavily dependent on the "adequacy" of the fitted regression model. In this article, we consider the absolute prediction error, the expected value of the absolute difference between the future and predicted responses, as the model evaluation criterion. This prediction error is easier to interpret than the average squared error and is equivalent to the mis-classification error for the binary outcome. We show that the distributions of the apparent error and its cross-validation counterparts are approximately normal even under a misspecified fitted model. When the prediction rule is "unsmooth", the variance of the above normal distribution can be estimated well via a perturbation-resampling method. We also show how to approximate the distribution of the difference of the estimated prediction errors from two competing models. With two real examples, we demonstrate that the resulting interval estimates for prediction errors provide much more information about model adequacy than the point estimates alone.