1000 resultados para d18O
Resumo:
Site 639, drilled during Leg 103 of the Ocean Drilling Program, penetrated an Upper Jurassic to Lower Cretaceous carbonate platform on a tilted fault block along the Galicia margin off the northwest Iberian Peninsula. The carbonate platform is composed primarily of a sequence of dolomite overlying limestone. Samples were analyzed for mineral chemistry, stable isotope geochemistry, fluid inclusion microthermometry, and volatile contents and by dolomite pyrolysis mass spectrometry for trace sulfate minerals. The dolomite recovered from the Galicia margin at Site 639 formed during shallow burial from sulfate-bearing, hypersaline brines at slightly elevated temperatures. The light oxygen isotopic signatures of the dolomite are interpreted as the result of the evaporative loop and slightly elevated temperatures during dolomite formation or from reequilibration at higher temperatures during deeper burial. The hypersalinity is interpreted to be associated with a nearby, shallow restricted basin that formed during rifting of the Iberian margin from Newfoundland. The dolomitization of the platform is therefore a by-product of the rifting.
Temperature and salinity reconstruction for the Last Interglacial Period in the North Atlantic Ocean
Resumo:
Eight deep-sea sediment cores from the North Atlantic Ocean ranging from 31° to 72°N are studied to reconstruct the meridional gradients in surface hydrographic conditions during the interval of minimum ice volume within the last interglacial period. Using benthic foraminiferal ?18O measurements and estimates of Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), we show that summer SSTs and SSSs decreased gradually during the interval of minimum ice volume at high-latitude sites (52°-72°N) whereas they were stable or increased during the same time period at low-latitude sites (31°-41°N). This increase in meridional gradients of SSTs and SSSs may have been due to changes in the latitudinal distribution of summer and annual-average insolation and associated oceanic and atmospheric feedbacks. These trends documented for the Eemian ice volume minimum period are similar to corresponding changes observed during the Holocene and may have had a similar origin.
Resumo:
The Messinian evaporitic succession recovered at ODP Sites 652, 653, and 654 in the Tyrrhenian Sea was generated under various environmental conditions which ranged from brackish to hypersaline, as deduced from the sedimentary facies and stable isotope compositions of the carbonate and sulfate deposits. Water in the basins had to be shallow to undergo such rapid and large geochemical variations. The marine influence was omnipresent in the basin at least during the deposition of sulfate evaporites; seawater or marine brines might have been supplied either by direct input into evaporitic lagoons as at Sites 653 and 654, or by subterraneous infiltration in marginal areas as at Site 652. Episodes of severe dilution by continental waters occurred frequently throughout Messinian times in the more basinal areas at Sites 653 and 654, while a fresh water body was standing permanently at Site 652. The high heat flow present at Site 652 was responsible for a major late authigenesis of iron-rich dolomites, which was initiated during the subsidence of the basin and ended before Pliocene.
Resumo:
As a result of both culture and sediment core studies, the ratio of germanium (Ge) to silicon (Si) in diatom shells has been proposed as a proxy for monitoring whole-ocean changes in seawater Ge/Si, a ratio affected by changes in continental weathering. However, because of the difficulties of extracting and cleaning diatom frustules from deep-sea sediments, only samples from highly pure diatom oozes in the Antarctic region have been previously analyzed. Here we present data on diatom Ge/Si ratios, (Ge/Si)opal, for the time interval between 3.1 and 1.9 Ma from a mid-latitude, coastal upwelling area where significant terrigenous sediment input complicated the sample processing and analyses. In general, our (Ge/Si)opal values show the same decreasing trend after 2.6 Ma than previously measured in Antarctic sediments (Shemesh et al., 1989. Paleoceanography 4, 221-231), but with a noisier background that may reflect the local imprint of proximal continental input superimposed upon global changes in the ocean reservoir. The time of initiation of large-scale North Hemisphere glaciation at ~2.6 Ma is characterized by a declining pattern of diatom Ge/Si ratios, which could have resulted from a global increase in the input of riverine Si due to enhanced silica weathering and/or equatorward (northward) intrusions of subantarctic waters enriched in silica. High (Ge/Si)opal ratios are associated with high opal contents from the same sediment samples and with warm climate as indicated by depleted benthic foraminiferal d18O values from the North and Equatorial Atlantic. Cold periods signified by enriched benthic d18O values, on the contrary, are associated with lower (Ge/Si)opal ratios. We interpret diatom Ge/Si values to reflect the prevailing weathering state on the continents, with greater chemical weathering during warm and wet periods of the Pliocene and less during cooler and drier intervals.
Resumo:
This study presents high-resolution foraminiferal-based sea surface temperature, sea surface salinity and upper water column stratification reconstructions off Cape Hatteras, a region sensitive to atmospheric and thermohaline circulation changes associated with the Gulf Stream. We focus on the last 10,000 years (10 ka) to study the surface hydrology changes under our current climate conditions and discuss the centennial to millennial time scale variability. We observed opposite evolutions between the conditions off Cape Hatteras and those south of Iceland, known today for the North Atlantic Oscillation pattern. We interpret the temperature and salinity changes in both regions as co-variation of activities of the subtropical and subpolar gyres. Around 8.3 ka and 5.2-3.5 ka, positive salinity anomalies are reconstructed off Cape Hatteras. We demonstrate, for the 5.2-3.5 ka period, that the salinity increase was caused by the cessation of the low salinity surface flow coming from the north. A northward displacement of the Gulf Stream, blocking the southbound low-salinity flow, concomitant to a reduced Meridional Overturning Circulation is the most likely scenario. Finally, wavelet transform analysis revealed a 1000-year period pacing the d18O signal over the early Holocene. This 1000-year frequency band is significantly coherent with the 1000-year frequency band of Total Solar Irradiance (TSI) between 9.5 ka and 7 ka and both signals are in phase over the rest of the studied period.
Resumo:
ODP Site 1237 and sediment core RRV9702a-69PC were investigated for siliciclastic grain-size distributions and changes in geochemical composition to reconstruct southeast trade-wind variability during the past 5 Ma. Because both, working and archive halves of all ODP Site 1237 cores were completely depleted between 3.3 and 8.1 meters composite depths, (mcd), the corresponding sections of pre-site survey core RRV9702A-69PC were sampled and investigated to fill the gap.
Resumo:
We generated benthic isotope records from Ocean Drilling Program (ODP) site 981 on the Feni drift (2173 m water depth) and from ODP site 983 on the Gardar drift (1983 m water depth) to examine the interaction between North Atlantic Deep Water (NADW) and Glacial North Atlantic Intermediate Water (GNAIW) formation from 2.0 to 1.4 Ma. We find NADW at both sites during interglacial periods, and a mix of NADW and Southern Ocean water at the Feini drift during most glacial periods. Prior to 1.7 Ma we find no evidence ofr GNAIW at the Gardar drift site. Instead, glacial Gardar drift delta13C values are as low or lower than values for all other sites in the North Atlantic and reflect continued glacial overflow from the Nordic seas. After 1.7 Ma Gardar drift delta13C values increase and suggest that there was GNAIW at the Gardar drift site during some glacial intervals. Overall, we find that NADW and GNAIW production changed around 1.7 Ma in concert with changes in sea surface temperature and salinity and in the Earth's obliquity cycle.
Resumo:
The properties of snow on East Antarctic sea ice off Wilkes Land were examined during the Sea Ice Physics and Ecosystem Experiment (SIPEX) in late winter of 2007, focusing on the interaction with sea ice. This observation includes 11 transect lines for the measurement of ice thickness, freeboard, and snow depth, 50 snow pits on 13 ice floes, and diurnal variation of surface heat flux on three ice floes. The detailed profiling of topography along the transects and the d18O, salinity, and density datasets of snow made it possible to examine the snow-sea-ice interaction quantitatively for the first time in this area. In general, the snow displayed significant heterogeneity in types, thickness (mean: 0.14 +- 0.13 m), and density (325 +- 38 kg/m**3), as reported in other East Antarctic regions. High salinity was confined to the lowest 0.1 m. Salinity and d18O data within this layer revealed that saline water originated from the surface brine of sea ice in 20% of the total sites and from seawater in 80%. From the vertical profiles of snow density, bulk thermal conductivity of snow was estimated as 0.15 W/K/m on average, only half of the value used for numerical sea-ice models. Although the upward heat flux within snow estimated with this value was significantly lower than that within ice, it turned out that a higher value of thermal conductivity (0.3 to 0.4 W/K/m) is preferable for estimating ice growth amount in current numerical models. Diurnal measurements showed that upward conductive heat flux within the snow and net long-wave radiation at the surface seem to play important roles in the formation of snow ice from slush. The detailed surface topography allowed us to compare the air-ice drag coefficients of ice and snow surfaces under neutral conditions, and to examine the possibility of the retrieval of ice thickness distribution from satellite remote sensing. It was found that overall snow cover works to enhance the surface roughness of sea ice rather than moderate it, and increases the drag coefficient by about 10%. As for thickness retrieval, mean ice thickness had a higher correlation with ice surface roughness than mean freeboard or surface elevation, which indicates the potential usefulness of satellite L-band SAR in estimating the ice thickness distribution in the seasonal sea-ice zone.
Resumo:
Features of sedimentation of carbonate mineral associations in the northeastern shelf of Sakhalin and other regions of the Sea of Okhotsk are considered. Special attention is paid to correlation between carbonate neoformations and abnormal fluxes of methane. In bottom sediments with high contents of methane carbonate-sulfide associations occur, their generation has been influenced by gas (mostly methane) fields. Joint consideration of distribution of gas and geochemical fields and mineral associations in the Sea of Okhotsk allows to understand better a mechanism of mineral generation in bottom sediments, possible formation of ore accumulations, and to use them as indicators for prognosis of mineral resources.
Resumo:
We present a reconstruction of El Niño Southern Oscillation (ENSO) variability spanning the Medieval Climate Anomaly (MCA, A.D. 800-1300) and the Little Ice Age (LIA, A.D. 1500-1850). Changes in ENSO are estimated by comparing the spread and symmetry of d18O values of individual specimens of the thermocline-dwelling planktonic foraminifer Pulleniatina obliquiloculata extracted from discrete time horizons of a sediment core collected in the Sulawesi Sea, at the edge of the western tropical Pacific warm pool. The spread of individual d18O values is interpreted to be a measure of the strength of both phases of ENSO while the symmetry of the d18O distributions is used to evaluate the relative strength/frequency of El Niño and La Niña events. In contrast to previous studies, we use robust and resistant statistics to quantify the spread and symmetry of the d18O distributions; an approach motivated by the relatively small sample size and the presence of outliers. Furthermore, we use a pseudo-proxy approach to investigate the effects of the different paleo-environmental factors on the statistics of the d18O distributions, which could bias the paleo-ENSO reconstruction. We find no systematic difference in the magnitude/strength of ENSO during the Northern Hemisphere MCA or LIA. However, our results suggest that ENSO during the MCA was skewed toward stronger/more frequent La Niña than El Niño, an observation consistent with the medieval megadroughts documented from sites in western North America.
Resumo:
Oceanographic changes in the western equatorial Pacific during the past 6 Ma are inferred from oxygen isotopic analyses of planktic and benthic foraminifera from Ontong Java Plateau (DSDP Site 586). The taxa are Globigerinoides sacculifer, Pulleniatina, Cibicidoides wuellerstorfi, and Oridorsalis umbonatus. Cooling and ice buildup are indicated by an 18O enrichment of 0.3 per mil in the planktic species near 3.4 Ma. This shift apparently is compensated in the benthic data by a warming of the deep waters by between 1° and 2° C. We suggest that the dominant source of upper deep water supply to the Pacific changed from Antarctic to North Atlantic at that time, the North Atlantic-derived water being warmer. Near 2.8 Ma (approximately) the planktic foraminifera again record an enrichment in 18O (Delta delta18O=0.25 per mil). We suggest ice buildup in the northern hemisphere as the cause, because of subsequent sharp increase in fluctuations of the delta18O signal, that is, instability. The enrichment is magnified in the benthic foraminifera (Delta delta18O = 0.5 per mil) by a cooling of the deep water by 1.5° at the time, presumably signalling a glacial-type reduction of North Atlantic Deep Water (NADW) production. Episodic divergence between the signals of G. sacculifer and Pulleniatina in the Pleistocene apparently reflects periods of increased upwelling in the western equatorial Pacific. The amplitude of ice volume fluctuations cannot be reconstructed from delta18O data alone, unless there are constraints on temperature variations. The increase in amplitude of fluctuation of the benthic and planktic signals during the Pleistocene may be attributed either to an increase in maximum ice volume, or to an increase in the fractionation of continental ice, or a combination of both causes.
Resumo:
Ocean Drilling Program Site 658, cored below a major upwelling cell offshore Cap Blanc, contains a largely undisturbed hemipelagic sediment section spanning the Brunhes Chron and the early Quaternary and late Pliocene. The companion Site 659 recovered a complete and undisturbed Neogene profile further offshore that serves as a nonupwelling pelagic reference section. Oxygen and carbon isotope ratios in benthic (C. wuellerstorfi and in part Uvigerina sp.) and planktonic foraminifers (G. inflata) provide a climatic record of high resolution for the Brunhes Chron. At Site 658 the record extends back to the early Pleistocene and late Pliocene. The standard oxygen isotope record of the last 730,000 yr is markedly refined by a well-documented high-frequency variation (e.g., by a new "aborted" ice age at stage 13.2 and by Younger-Dryas style climatic setbacks during most terminations). In the late Pliocene, the numerical oxygen isotope stage taxonomy was extended back to stage 137 about 3.3 Ma ago. In comparison with published records, stage 114 at 2.7 Ma represents the first major glaciation event, when 18O was short-term enriched up to a middle Pleistocene glacial d18O level. About 3.17 Ma ago (stage 133), the interglacial oxygen isotope values of C. wuellerstorfi started to increase by 0.5 per mil until 2.7 Ma and then remained largely constant until the Holocene. Based on the d13C difference between C. wuellerstorfi and G. inflata, the dissolved CO2 in the ambient bottom water of Site 658 was dominated by the flux of particulate carbon from the overlying upwelling cell during the last 630,000 yr. In contrast, the advection of (upper) North Atlantic Bottom Water dominated in the control of the local CO2 content during the early Pleistocene and late Pliocene.
Resumo:
The data collection "Deep Drilling of Glaciers: Soviet-Russian projects in Arctic, 1975-1995" was collected by the following basic considerations: - compilation of deep (>100 m) drilling projects on Arctic glaciers, using data of (a) publications; (b) archives of IGRAN; (c) personal communication of project participants; - documentation of parameters, references. Accuracy of data and techniques applied to determine different parameters are not evaluated. The accuracy of some geochemical parameters (up to 1984 and heavy metalls) is uncertain. Most reconstructions of ice core age and of annual layer thickness are discussed; - digitizing of published diagrams (in case, when original numerical data were lost) and subsequent data conversion to equal range series and adjustment to the common units. Therefore, the equal-range series were calculated from original data or converted from digitized chart values as indicated in the metadata. For the methodological purpose, the equal-range series obtained from original and reconstructed data were compared repeatedly; the systematic difference was less then 5-7%. Special attention should be given to the fact, that the data for individual ice core parameters varies, because some parameters were originally measured or registered. Parameters were converted in equal-range series using 2 m steps; - two or more parameter values were determined, then the mean-weighted (i.e. accounting the sample length) value is assigned to the entire interval; - one parameter value was determined, measured or registered independently from the parameter values in depth intervals which over- and underlie it, then the value is assigned to the entire interval; - one parameter value was determined, measured or registered for two adjoining depth intervals, then the specific value is assigned to the depth interval, which represents >75% of sample length ; if each of adjoining depth intervals represents <75% of sample length, then the correspondent parameter value is assigned to both intervals of depth. This collection of ice core data (version 2000) was made available through the EU funded QUEEN project by S.M. Arkhipov, Moscow.