728 resultados para blooms opportunistes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La transplantation de sang de cordon ombilical (TSCO) constitue un traitement de choix pour une multitude de pathologies hématologiques malignes et non malignes chez l’enfant et dans certains cas l’adulte. La TSCO est associée à certaines complications, dont une reconstitution immunitaire plus lente et une incidence élevée d’infections opportunistes, notamment celles reliées au cytomégalovirus (CMV) et au virus varicella-zoster (VZV). Dans le cadre de ce travail, nous nous sommes intéressés dans un premier temps à la caractérisation de la reconstitution immunitaire spécifique au CMV et au VZV. Nos résultats ont démontré que la reconstitution de l’immunité cellulaire ne requiert ni un statut séropositif pré-transplantation ni le développement de la maladie. De plus, des reconstitutions spontanées ont été détectées chez certains patients séronégatifs vis-à-vis du CMV ou du VZV. Outre le fait qu’elle se manifeste surtout à partir de 6 mois post-transplantation, ladite reconstitution mérite le qualificatif de « protectrice » en termes de réactivations virales et du développement de signes cliniques lorsqu’une fréquence de 150 cellules produisant l’IFN-γ/million est dépassée. Toutefois, moins de 5% des patients développent une réponse T anti-VZV et anti-CMV au cours 100 premiers jours suivant la TSCO. Il est donc possible que les lymphocytes CD8+ T provenant du SCO, comparativement à leurs homologues provenant de la moelle osseuse (MO), présentent un défaut de fonctionnalité, communément appelé « épuisement clonal ». La caractérisation du répertoire de récepteurs inhibiteurs exprimés par les cellules T CD8+ suivant la TSCO ou la transplantation de moelle osseuse (TMO) a révélé une augmentation significative de la fréquence des cellules exprimant PD-1 tôt suivant la transplantation. Cette population, caractérisée majoritairement par un phénotype effecteur-mémoire (EM), démontre une perte significative de la capacité proliférative et exprime moins d'IFN-γ, d'IL-2, de TNF-α et de CD107a. Une meilleure caractérisation de la reconstitution immunitaire après TSCO permettrait, d'une part de sélectionner des biomarqueurs en vue d’une meilleure gestion des patients à risques de développer des infections virales et/ou de rechuter, et d'autre part d'améliorer leur pronostic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Billings Complex and the Guarapiranga System are important strategic reservoirs for the city of São Paulo and surrounding areas because the water is used among other things, for the public water supply. They produce 19,000 liters of water per second and Supply water to 5.4 million people. Crude water is transferred from the Taquacetuba branch of the Billings Complex to the Guarapiranga Reservoir to regulate the water level of the reservoir. The objective of this study was to evaluate the water quality in the Taquacetuba branch, focusing on cyanobacteria and cyanotoxins. Surface water samples were collected in February (summer) and July (winter) of 2007. Analyses were conducted of physical, chemical, and biological variables of he water, cyanobacteria richness and density, and the presence of cyanotoxins. The water was classified as eutrophic-hypereutrophic. Cyanobacteria blooms were observed in both collection periods. The cyanobacteria bloom was most significant in July, reflecting lower water transparency and higher levels of total solids, suspended organic matter, chlorophyll-a, and cyanobacteria density in the surface water. Low richness and elevated dominance of the cyanobacteria were found in both periods. Cylindrospermopsis raciborskii was dominant in February, with 352 661.0 cel mL(-1), and Microcystis panniformis was dominant in July, with 1 866 725.0 cel mL(-1). Three variants of microcystin were found in February (MC-RR, MC-LR, MC-YR), as well as saxitoxin. The same variants of microcystin were found in July, but no saxitoxin was detected. Anatoxin-a and cylindropermopsin were not detected in either period. These findings are of great concern because the water in the Taquacetuba branch, which is transferred into the Guarapiranga Reservoir, is not treated nor managed. It is recommended that monitoring be intensified and more effective measures be taken by the responsible agencies to prevent the process of eutrophication and the consequent development of the cyanobacteria and their toxins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudos recentes na baía de Santos (sudeste do Brasil), localizada em um sistema estuarino altamente urbanizado, mostraram o aumento de espécies fitoplanctônicas potencialmente nocivas. Apesar da importância da previsão das florações algais nocivas, é difícil determinar a estrutura da comunidade fitoplanctônica em ambientes extremamente dinâmicos. O presente estudo analisa florações dominadas pelo microfitoplâncton e sua relação com variáveis físicas e meteorológicas, a fim de determinar padrões associados às marés e às estações do ano. Foram comparadas oito situações e obtidos cinco cenários de dominância relacionados aos ventos, marés e pluviosidade: i) Surfers, diatomáceas associadas à zona de surfe, de alta energia; ii) Sinkers, diatomáceas de tamanho grande que ocorrem nas marés de sizígia, depois de períodos de alta pluviosidade; iii) Opportunistic mixers, diatomáceas pequenas ou alongadas, formadoras de cadeia, que ocorrem durante períodos de quadratura; iv) Local mixers, diatomáceas e dinoflagelados microplanctônicos que foram abundantes em todas as 298 estações amostradas, e v) Mixotrophic dinoflagellates, que ocorrem após intensas descargas estuarinas. Os resultados sugerem uma alteração no padrão temporal de algumas espécies formadoras de florações, enquanto outras apresentaram abundâncias superiores aos valores seguros para a saúde publica. Esta abordagem ilustra também os possíveis impactos de variações na descarga de água doce em estuários altamente eutrofizados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biogeochemical-Argo is the extension of the Argo array of profiling floats to include floats that are equipped with biogeochemical sensors for pH, oxygen, nitrate, chlorophyll, suspended particles, and downwelling irradiance. Argo is a highly regarded, international program that measures the changing ocean temperature (heat content) and salinity with profiling floats distributed throughout the ocean. Newly developed sensors now allow profiling floats to also observe biogeochemical properties with sufficient accuracy for climate studies. This extension of Argo will enable an observing system that can determine the seasonal to decadal-scale variability in biological productivity, the supply of essential plant nutrients from deep-waters to the sunlit surface layer, ocean acidification, hypoxia, and ocean uptake of CO2. Biogeochemical-Argo will drive a transformative shift in our ability to observe and predict the effects of climate change on ocean metabolism, carbon uptake, and living marine resource management. Presently, vast areas of the open ocean are sampled only once per decade or less, with sampling occurring mainly in summer. Our ability to detect changes in biogeochemical processes that may occur due to the warming and acidification driven by increasing atmospheric CO2, as well as by natural climate variability, is greatly hindered by this undersampling. In close synergy with satellite systems (which are effective at detecting global patterns for a few biogeochemical parameters, but only very close to the sea surface and in the absence of clouds), a global array of biogeochemical sensors would revolutionize our understanding of ocean carbon uptake, productivity, and deoxygenation. The array would reveal the biological, chemical, and physical events that control these processes. Such a system would enable a new generation of global ocean prediction systems in support of carbon cycling, acidification, hypoxia and harmful algal blooms studies, as well as the management of living marine resources. In order to prepare for a global Biogeochemical-Argo array, several prototype profiling float arrays have been developed at the regional scale by various countries and are now operating. Examples include regional arrays in the Southern Ocean (SOCCOM ), the North Atlantic Sub-polar Gyre (remOcean ), the Mediterranean Sea (NAOS ), the Kuroshio region of the North Pacific (INBOX ), and the Indian Ocean (IOBioArgo ). For example, the SOCCOM program is deploying 200 profiling floats with biogeochemical sensors throughout the Southern Ocean, including areas covered seasonally with ice. The resulting data, which are publically available in real time, are being linked with computer models to better understand the role of the Southern Ocean in influencing CO2 uptake, biological productivity, and nutrient supply to distant regions of the world ocean. The success of these regional projects has motivated a planning meeting to discuss the requirements for and applications of a global-scale Biogeochemical-Argo program. The meeting was held 11-13 January 2016 in Villefranche-sur-Mer, France with attendees from eight nations now deploying Argo floats with biogeochemical sensors present to discuss this topic. In preparation, computer simulations and a variety of analyses were conducted to assess the resources required for the transition to a global-scale array. Based on these analyses and simulations, it was concluded that an array of about 1000 biogeochemical profiling floats would provide the needed resolution to greatly improve our understanding of biogeochemical processes and to enable significant improvement in ecosystem models. With an endurance of four years for a Biogeochemical-Argo float, this system would require the procurement and deployment of 250 new floats per year to maintain a 1000 float array. The lifetime cost for a Biogeochemical-Argo float, including capital expense, calibration, data management, and data transmission, is about $100,000. A global Biogeochemical-Argo system would thus cost about $25,000,000 annually. In the present Argo paradigm, the US provides half of the profiling floats in the array, while the EU, Austral/Asia, and Canada share most the remaining half. If this approach is adopted, the US cost for the Biogeochemical-Argo system would be ~$12,500,000 annually and ~$6,250,000 each for the EU, and Austral/Asia and Canada. This includes no direct costs for ship time and presumes that float deployments can be carried out from future research cruises of opportunity, including, for example, the international GO-SHIP program (http://www.go-ship.org). The full-scale implementation of a global Biogeochemical-Argo system with 1000 floats is feasible within a decade. The successful, ongoing pilot projects have provided the foundation and start for such a system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nutrient loading has been linked with severe water quality impairment, ranging from hypoxia to increased frequency of harmful algal blooms (HABs), loss of fisheries, and changes in biodiversity. Waters around the globe are experiencing deleterious effects of eutrophication; however, the relative amount of nitrogen (N) and phosphorus (P) reaching these waters is not changing proportionately, with high N loads increasingly enriched in chemically-reduced N forms. Research involving two urban freshwater and nutrient enriched systems, the Anacostia River, USA, a tributary of the Potomac River feeding into the Chesapeake Bay, and West Lake, Hangzhou, Zhejiang Province, China, was conducted to assess the response of phytoplankton communities to changing N-form and N/P-ratios. Field observations involving the characterization of ambient phytoplankton communities and N-forms, as well as experimental (nutrient enrichment) manipulations were used to understand shifts in phytoplankton community composition with increasing NH4+ loads. In both locations, a >2-fold increase in ambient NH4+:NO3- ratios was followed by a shift in the phytoplankton community, with diatoms giving way to chlorophytes and cyanobacteria. Enrichment experiments mirrored this, in that samples enriched with NH4+ lead to increased abundance of chlorophytes and cyanobacteria. This work shows that in both of these systems experiencing nutrient enrichment that NH4+ supports communities dominated by more chlorophytes and cyanobacteria than other phytoplankton groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Molecular e Microbiana, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of toxic cyanobacterial blooms is one of the important consequences of eutrophication in aquatic ecosystems. It is a very common phenomenon in reservoirs and shrimp ponds in the State of Rio Grande do Norte (RN), Brazil. Cyanobacterias produce toxins which can affect aquatic organisms and men trough the food chain. Aiming to contribute to the studies of cyanobacterias in RN, we propose: a) to evaluate the toxicity of isolated cyanobacterias in important fresh-water environments; and b) to verify the effects of both natural and cultured blooms occurred in reservoirs for human supply and in the cladoceran Ceriodaphnia silvestrii. This study was carried out using samples of natural blooms occurred between March and October of 2004 in Gargalheiras Dam (08º L e 39º W), in July of 2004 in Armando Ribeiro Gonçalves Dam (06o S e 37o W) and in commercial shrimp ponds (Litopenaeus vannamei) located in fresh-water environments. The samples were collected with plankton net (20µm.) for identification, isolation and obtaining of phytoplanktonic biomass for liophilization and later toxicity bioassays. The toxicity of cultured samples and natural blooms was investigated through bioassays in Swiss mice. Quantification of cyanobacteria in samples was conducted following the Ütermol method, with 300mL samples fixed with lugol. The toxicity test with Ceriodaphnia silvestrii followed ABNT, 2001 recommendations, and were accomplished with natural hepatotoxic bloom s samples and cultured samples of both non-toxic and neurotoxic C. raciborskii. In this test, five newborns, aged between 6 and 24 hours, were exposed to different concentrations (0 a 800 mg.L-1) of crude cyanobacterial extracts during 24 and 48 hours. Three replicates were used per treatment. The pH, temperature and dissolved oxygen at the beginning and after 24 and 48hours from the test were measured. We estimated the CL50 through the Trimmed Spearman-Karber method. The blooms were constituted by Microcystis panniformis, M. aeruginosa, Anabaena circinalis, Cylindrospermopsis raciborskii and Planktothrix agardhii, producers of mycrocistin-LR confirmed with HPLC analysis. Samples of hepatotoxic blooms registered toxinogenic potential for C. silvestrii, with CL50-24h value of 47.48 mg.L-1 and CL5048h of 38.15 mg.L-1 for GARG samples in march/2005; CL50-24h of 113,13 mg.L-1 and CL5048h of 88,24 mg.L-1 for ARG July/2004; CL50-24h of 300.39 mg.L-1 and CL50-48h of 149.89 mg.L-1 for GARG October/2005. For cultured samples, values of CL50-24h and CL50-48h for C. raciborskii toxic strains were 228.05 and 120.28 mg.L-1, respectively. There was no mortality of C. silvestrii during the tests with non-toxic C. raciborskii strain. The toxicity test with C. silvestrii presented good sensitivity degree to cyanotoxins. The toxicity of natural hepatotoxic blooms samples (microcystins) and cultured neurotoxic saxitoxins producer samples analyzed in this study give us strong indications of that toxin s influence on the zooplanktonic community structure in tropical aquatic environments. Eleven cyanobacteria strains were isolated, representing 6 species: Anabaenopsis sp., Cylindrospermopsis raciborskii, Chroococcus sp., Microcystis panniformis, Geitlerinema unigranulatum e Planktothrix agardhii. None presented toxicity in Swiss mice. The strains were catalogued and deposited in the Laboratório de Ecologia e Toxicologia de Organismos Aquáticos (LETMA), in UFRN, and will be utilized in ecotoxicológical and ecophysiological studies, aiming to clarify the causes and control of cyanobacterial blooms in aquatic environments in RN. This state s reservoirs must receive broader attention from the authorities, considering the constant blooms occurring in waters used for human consumption

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Domoic acid (DA) is a naturally occurring cyanotoxin, which upon ingestion, is responsible for amnesic shellfish poisoning (ASP) in both humans and animals. Produced by the marine diatom, Pseudonitzschia, DA is accumulated by a number of marine organisms including shellfish, clams and mussels which upon consumption can lead to headaches, nausea and seizures. Possessing a variety of functional groups the structure of DA contains three carboxyl groups, a pyrrole ring and a potent conjugated diene region allowing for binding to glutamate receptors in the dorsal hippocampus of the brain causing the described detrimental effects. Although limitations have been placed regarding the amount of DA that may be contained in seafood no limitations have been placed on the amount present in drinking water. Natural degradation of the toxin may occur through reactive oxygen species such as the hydroxyl radical and singlet oxygen at the conjugated diene region. In this work the photooxidation of DA via singlet oxygen has been studied using sorbic acid as a model compound. The three major reaction pathways observed during the photooxdiation process for both acids include 2 + 4 cycloaddition to produce endoperoxides , 2 + 2 reaction to afford aldehydes and ketones or an ene reaction to generate hydroperoxides. Under similar reaction conditions for SA and DA, the endoperoxide has been seen to be the major product for photoxidation of SA while the hydroperoxide has been seen to be the dominant product during photooxidation of DA.