929 resultados para bioelettronica, organica, neuroni, PEDOT, PSS, perilene, transistor, elettrochimici, organici, OCST
Resumo:
The dopant/host concept, which is an efficient approach to enhance the electroluminescence (EL) efficiency and stability for organic light-emitting diodes (OLEDs) devices, has been applied to design efficient and stable blue light-emitting polymers. By covalently attaching 0.2 mol % highly fluorescent 4-dimethylamino-1,8-naphthalimide (DMAN) unit (photoluminescence quantum efficiency: Phi(PL)=0.84) to the pendant chain of polyfluorene, an efficient and colorfast blue light-emitting polymer with a dopant/host system and a molecular dispersion feature was developed. The single-layer device (indium tin oxide/PEDOT/polymer/Ca/Al) exhibited the maximum luminance efficiency of 6.85 cd/A and maximum power efficiency of 5.38 lm/W with the CIE coordinates of (0.15, 0.19). Moreover, no undesired long-wavelength green emission was observed in the EL spectra when the device was thermal annealed in air at 180 degrees C for 1 h before cathode deposition. These significant improvements in both efficiency and color stability are due to the charge trapping and energy transfer from polyfluorene host to highly fluorescent DMAN dopant in the molecular level.
Resumo:
Memory effects in single-layer organic light-emitting devices based on Sm3+, Gd3+, and Eu3+ rare earth complexes were realized. The device structure was indium-tin-oxide (ITO)/3,4-poly(ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT)/Poly(N-vinyl carbazole) (PVK): rare earth complex/LiF/Ca/Ag. It was found experimentally that all the devices exhibited two distinctive bistable conductivity states in current-voltage characteristics by applying negative starting voltage, and more than 10(6) write-read-erase-reread cycles were achieved without degradation. Our results indicate that the rare earth organic complexes are promising materials for high-density, low-cost memory application besides the potential application as organic light-emitting materials in display devices.
Resumo:
Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.
Resumo:
The dopant/host methodology, which enables efficient tuning of emission color and enhancement of the electroluminescence (EL) efficiency of organic light emitting diodes (OLEDs) based on small molecules, is applied to the design and synthesis of highly efficient green light emitting polymers. Highly efficient green light emitting polymers were obtained by covalently attaching just 0.3-1.0 mol% of a green dopant, 4-(N,N-diphenyl) amino-1,8-naphthaliniide (DPAN), to the pendant chain of polyfluorene (the host). The polymers emit green light and exhibit a high photoluminescence (PL) quantum yield of Lip to 0.96 in solid films, which is attributed to the energy transfer from the polyfluorene host to the DPAN dopant unit. Single layer devices (device configuration: ITO/PEDOT/Polymer/Ca/Al) of the polymers exhibit a turn on voltage of 4.8 V, luminance efficiency of 7.43 cd A(-1), power efficiency of 2.96 lm W-1 and CIE coordinates at (0.26, 0.58). The good device performance can be attributed to the energy transfer and charge trapping from the polyfluorene host to the DPAN dopant unit as well as the molecular dispersion of the dopant in the host.
Phenylene vinylene-based electroluminescent polymers with electron transport block in the main chain
Resumo:
We report a new route for the design of soluble phenylene vinylene (PV) based electroluminescent polymers bearing electron-deficient oxadizole (OXD) and triazole (TZ) moieties in the main chains with the aryloxy linkage. Both series of the PV-based polymers were prepared by Wittig reaction. By properly adjusting the OXD and/or TZ content through copolymerization, we can achieve an enhanced balance of hole- and electron injections, such that the device efficiency is significantly improved. Light-emitting diodes fabricated from P1, P2, P3, P4, P5, P6, and P7 with the configuration of Indium-Tin Oxide (ITO)/Poly (styrene sulfonic acid) doped poly (ethylenedioxythiophene) (PEDOT)/polymer/Ca/Al, emit bright green light with the maximum peak around 500 nm. For the device using the optimal polymer (P4) as emitting layer, a maximum brightness of 1300 cd/m(2) at 20 V and a maximum luminance efficiency of 0.325 cd/A can be obtained.
Resumo:
A new electrogenerated chemiluminescence biosensor was fabricated by immobilizing ECL reagent Ru(bPY)(3)(2+) and alcohol dehydrogenase in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) (PSS) organically modified composite material. The component PSS was used to immobilize ECL reagent Ru(bpy)(3)(2+) by ion-exchange, while the addition of chitosan was to prevent the cracking of conventional sol-gel-derived glasses and provide biocompatible microenvironment for alcohol dehydrogenase. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate and it was much simpler than previous double-layer design. The detection limit was 9.3 x 10(-6) M for alcohol (S/N = 3) with a linear range from 2.79 x 10(-5) to 5.78 x 10(-2) M. With ECL detection, the biosensor exhibited wide linear range, high sensitivity and good stability.
Resumo:
An organic integrated pixel consisting of an organic light-emitting diode driven by an organic thin-film field-effect transistor (OTFT) was fabricated by a full evaporation method oil a transparent glass substrate. The OTFT was designed as a top-gate Structure, and the insulator is composed of a double-layer polymer of Nylon 6 and Teflon to lower the operation voltage and the gate-leakage current, and improve the device stability. The field-effect mobility of the OTFT is more than 0.5 cm(2) V-1 s(-1), and the on/off ratio is larger than 10(3). The brightness of the pixel reached as large as 300 cd m(-2) at a driving current of 50 mu A.
Resumo:
Poly(L-lactide) (PLLA) surface was modified via aminolysis by poly(allylamine hydrochloride) (PAH) at high pH and subsequent electrostatic self-assembly of poly(sodium styrenesulfonate) (PSS) and PAH, and the process was monitored by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. These modified PLLAs were then used as charged substrates for further incorporation of gelatin to improve their cytocompatibility. The amphoteric nature of the gelatin was exploited and the gelatin was adsorbed to the negatively charged PLLA/PSS and positively charged PLLA/PAH at pH = 3.4 and 7.4, respectively. XPS and water contact angle data indicated that the gelatin adsorption at pH = 3.4 resulted in much higher surface coverage by gelatin than at pH = 7.4. All the modified PLLA surfaces became more hydrophilic than the virgin PLLA. Chondrocyte culture was used to test the cell attachment, cell morphology and cell viability on the modified PLLA substrates.
Resumo:
A soluble electroluminescent polymer containing hole-deficient triphenylamine and electron-deficient oxadiazole units in the main chains has been designed and studied. The design is based on the consideration that the triphenylamine group possesses good hole-transporting property and the oxadiazole unit is known to be of electron-transporting character. Because of the good bipolar transporting performance, the brightness and electroluminescent efficiency are significantly improved and the turn-on voltage is reduced compared with a similar polymer without the electron-deficient oxadiazole units in the main chains. For a device with configuration ITO/PEDOT/polymer/CsF/Al, a maximum brightness of 3600 cd m(-2) and a maximum luminescent efficiency of 0.65 cd A(-1) (quantum efficiency of 0.3%) were obtained in the polymer with oxadiazole units, about 15 times brighter and 15 times more efficient than the corresponding polymer without oxadiazole units.
Resumo:
An organic thin-film transistor (OTFT) having a low-dielectric polymer layer between gate insulator and source/drain electrodes is investigated. Copper phthalocyanine (CuPc), a well-known organic semiconductor, is used as an active layer to test performance of the device. Compared with bottom-contact devices, leakage current is reduced by roughly one order of magnitude, and on-state current is enhanced by almost one order of magnitude. The performance of the device is almost the same as that of a top-contact device. The low-dielectric polymer may play two roles to improve OTFT performance. One is that this structure influences electric-field distribution between source/drain electrodes and semiconductor and enhances charge injection. The other is that the polymer influences growth behavior of CuPc thin films and enhances physical connection between source/drain electrodes and semiconductor channel. Advantages of the OTFT having bottom-contact structure make it useful for integrated plastic electronic devices.
Resumo:
The organic-inorganic hybrid, PSS-silica composite material was developed for the immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) on glassy carbon electrode via ion-exchange (PSS stands for poly(sodium 4-styrene-sulfonate)). The electrochemiluminescence (ECL) and electrochemistry of Ru(bpy)(3)(2-) immobilized in the composite thin films have been investigated with tripropylamine (TPA) as the coreactant. The immobilized Ru(bpy)(3)(2-) underwent a surface process. The modified electrode was used for the ECL detection of TPA and showed high sensitivity. Detection limit was 0,1 mumol L-1 for TPA (S/N = 3) with a linear range from 0.5 mumol L-1 to 5 mmol L-1 (R = 0.998), Moreover, the resulting modified electrode was stable over six months and the good stability may be due to the strong interaction between Ru(bpy)(3)(2-) and the high ion-exchange able PSS-silica composite films on GCE. Compared with other materials. the PSS-silica composite films containing incorporated Ru(bpy)(3)(2-) showed improved sensitivity and long-term stability, Thus, such composite thin film can be a promising material for the construction of ECL sensor.
Resumo:
An ultrathin composite film containing both polyoxometalate anion [PMo12O40](3-) ( PMo12) and a planar binuclear phthalocyanine, bi-CoPc, has been prepared by the electrostatic layer-by-layer self-assembly method. UV-vis measurements revealed regular film growth with each four-layer {PMo12/bi-CoPc/PSS/PAH} adsorption. The lm structure was characterized by small-angle X-ray reflectivity measurements, X-ray photoelectron spectra, and AFM images. The nanothick film shows a third-order nonlinear optical response of chi((3)) = 4.21 x 10(-12) esu. Experimental investigations also indicate that the combination of polyoxometalate anions [PMo12O40](3-) with the phthalocyanine bi-CoPc in multilayer films can enhance the third-order NLO susceptibility and modify the third-order NLO absorption of bi-CoPc.
Resumo:
Ultrathin multilayer films consisting of the polyoxotungstoeuropate cluster K-12[EuP5W30O110] (EuP5W30) and poly( allylamine hydrochloride) (PAH) have been prepared by the layer-by-layer self-assembly method. The (EuP5W30 /PAH) multilayer films have been characterized by small-angle X-ray reflectivity measurements, X-ray photoelectron spectra, and atomic force microscopy (AFM). From the AFM images, the thickness of the {PEI/PSS/PAH(EuW30/PAH)} multilayer film was estimated to be 6.5 nm, corresponding to an average thickness of ca. 1.1 nm for a EuW30/PAH layer pair. The photoluminescent behavior of the film at room temperature was investigated to show the characteristic Eu3+ emission pattern of D-5(0)-->F-7(J). The fluorescence behavior of the multilayer film is essentially identical to that of H-n[EuP5W30O110]((12-n)-) in a concentrated aqueous solution, except for the relative intensities and peak bandwidths. The occurence of photoluminescent activity confirms the potential for creating luminescent multilayers with polyoxometalates (see ref. 23).
Resumo:
Two new ultrathin multiplayer films have been successfully prepared fi-om Keggin-type heteropoly acids H-4[SiW12O40] and H-3[PMo12O40] with polyelectrolytes PEI, PSS, and PAH, using the electrostatic layer-by-layer self-assembly, technique. The XR results reveal their film thickness at nanoscale (similar to 20 nm). According to the AFM images, it is believed that the surface roughness (rough degree of film surface) of the polyelectrolyte-polyoxometalate film greatly depends on the kind of polyoxometalates.
Resumo:
The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.