909 resultados para Wine and wine making Analysis
Resumo:
Chenjerai Hove, world-renowned Zimbabwean author, presents a lecture on the subject of his experiences as an exiled author in the United States. Event held at the Graham Center, Modesto Maidique Campus, Florida International University on October 28,2013.
Resumo:
Understanding pathways of neurological disorders requires extensive research on both functional and structural characteristics of the brain. This dissertation introduced two interrelated research endeavors, describing (1) a novel integrated approach for constructing functional connectivity networks (FCNs) of brain using non-invasive scalp EEG recordings; and (2) a decision aid for estimating intracranial volume (ICV). The approach in (1) was developed to study the alterations of networks in patients with pediatric epilepsy. Results demonstrated the existence of statistically significant (p
Resumo:
The potential of solid phase microextraction (SPME) in the analysis of explosives is demonstrated. A sensitive, rapid, solventless and inexpensive method for the analysis of explosives and explosive odors from solid and liquid samples has been optimized using SPME followed by HPLC and GC/ECD. SPME involves the extraction of the organic components in debris samples into sorbent-coated silica fibers, which can be transferred directly to the injector of a gas chromatograph. SPME/HPLC requires a special desorption apparatus to elute the extracted analyte onto the column at high pressure. Re suits for use of GC[ECD is presented and compared to the results gathered by using HPLC analysis. The relative effects of controllable variables including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time have been optimized for various high explosives.
Resumo:
Disasters are complex events characterized by damage to key infrastructure and population displacements into disaster shelters. Assessing the living environment in shelters during disasters is a crucial health security concern. Until now, jurisdictional knowledge and preparedness on those assessment methods, or deficiencies found in shelters is limited. A cross-sectional survey (STUSA survey) ascertained knowledge and preparedness for those assessments in all 50 states, DC, and 5 US territories. Descriptive analysis of overall knowledge and preparedness was performed. Fisher’s exact statistics analyzed differences between two groups: jurisdiction type and population size. Two logistic regression models analyzed earthquakes and hurricane risks as predictors of knowledge and preparedness. A convenience sample of state shelter assessments records (n=116) was analyzed to describe environmental health deficiencies found during selected events. Overall, 55 (98%) of jurisdictions responded (states and territories) and appeared to be knowledgeable of these assessments (states 92%, territories 100%, p = 1.000), and engaged in disaster planning with shelter partners (states 96%, territories 83%, p = 0.564). Few had shelter assessment procedures (states 53%, territories 50%, p = 1.000); or training in disaster shelter assessments (states 41%, 60% territories, p = 0.638). Knowledge or preparedness was not predicted by disaster risks, population size, and jurisdiction type in neither model. Knowledge: hurricane (Adjusted OR 0.69, 95% C.I. 0.06-7.88); earthquake (OR 0.82, 95% C.I. 0.17-4.06); and both risks (OR 1.44, 95% C.I. 0.24-8.63); preparedness model: hurricane (OR 1.91, 95% C.I. 0.06-20.69); earthquake (OR 0.47, 95% C.I. 0.7-3.17); and both risks (OR 0.50, 95% C.I. 0.06-3.94). Environmental health deficiencies documented in shelter assessments occurred mostly in: sanitation (30%); facility (17%); food (15%); and sleeping areas (12%); and during ice storms and tornadoes. More research is needed in the area of environmental health assessments of disaster shelters, particularly, in those areas that may provide better insight into the living environment of all shelter occupants and potential effects in disaster morbidity and mortality. Also, to evaluate the effectiveness and usefulness of these assessments methods and the data available on environmental health deficiencies in risk management to protect those at greater risk in shelter facilities during disasters.
Resumo:
Classification procedures, including atmospheric correction satellite images as well as classification performance utilizing calibration and validation at different levels, have been investigated in the context of a coarse land-cover classification scheme for the Pachitea Basin. Two different correction methods were tested against no correction in terms of reflectance correction towards a common response for pseudo-invariant features (PIF). The accuracy of classifications derived from each of the three methods was then assessed in a discriminant analysis using crossvalidation at pixel, polygon, region, and image levels. Results indicate that only regression adjusted images using PIFs show no significant difference between images in any of the bands. A comparison of classifications at different levels suggests though that at pixel, polygon, and region levels the accuracy of the classifications do not significantly differ between corrected and uncorrected images. Spatial patterns of land-cover were analyzed in terms of colonization history, infrastructure, suitability of the land, and landownership. The actual use of the land is driven mainly by the ability to access the land and markets as is obvious in the distribution of land cover as a function of distance to rivers and roads. When considering all rivers and roads a threshold distance at which disproportional agro-pastoral land cover switches from over represented to under represented is at about 1km. Best land use suggestions seem not to affect the choice of land use. Differences in abundance of land cover between watersheds are more prevailing than differences between colonist and indigenous groups.
Resumo:
The successful performance of a hydrological model is usually challenged by the quality of the sensitivity analysis, calibration and uncertainty analysis carried out in the modeling exercise and subsequent simulation results. This is especially important under changing climatic conditions where there are more uncertainties associated with climate models and downscaling processes that increase the complexities of the hydrological modeling system. In response to these challenges and to improve the performance of the hydrological models under changing climatic conditions, this research proposed five new methods for supporting hydrological modeling. First, a design of experiment aided sensitivity analysis and parameterization (DOE-SAP) method was proposed to investigate the significant parameters and provide more reliable sensitivity analysis for improving parameterization during hydrological modeling. The better calibration results along with the advanced sensitivity analysis for significant parameters and their interactions were achieved in the case study. Second, a comprehensive uncertainty evaluation scheme was developed to evaluate three uncertainty analysis methods, the sequential uncertainty fitting version 2 (SUFI-2), generalized likelihood uncertainty estimation (GLUE) and Parameter solution (ParaSol) methods. The results showed that the SUFI-2 performed better than the other two methods based on calibration and uncertainty analysis results. The proposed evaluation scheme demonstrated that it is capable of selecting the most suitable uncertainty method for case studies. Third, a novel sequential multi-criteria based calibration and uncertainty analysis (SMC-CUA) method was proposed to improve the efficiency of calibration and uncertainty analysis and control the phenomenon of equifinality. The results showed that the SMC-CUA method was able to provide better uncertainty analysis results with high computational efficiency compared to the SUFI-2 and GLUE methods and control parameter uncertainty and the equifinality effect without sacrificing simulation performance. Fourth, an innovative response based statistical evaluation method (RESEM) was proposed for estimating the uncertainty propagated effects and providing long-term prediction for hydrological responses under changing climatic conditions. By using RESEM, the uncertainty propagated from statistical downscaling to hydrological modeling can be evaluated. Fifth, an integrated simulation-based evaluation system for uncertainty propagation analysis (ISES-UPA) was proposed for investigating the effects and contributions of different uncertainty components to the total propagated uncertainty from statistical downscaling. Using ISES-UPA, the uncertainty from statistical downscaling, uncertainty from hydrological modeling, and the total uncertainty from two uncertainty sources can be compared and quantified. The feasibility of all the methods has been tested using hypothetical and real-world case studies. The proposed methods can also be integrated as a hydrological modeling system to better support hydrological studies under changing climatic conditions. The results from the proposed integrated hydrological modeling system can be used as scientific references for decision makers to reduce the potential risk of damages caused by extreme events for long-term water resource management and planning.
Resumo:
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to 650 mmol L**-1 at 150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at 60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (dD-CH4 = -170.8 per mil (SMOW), d13C-CH4 = -61.0 per mil (V-PDB), d13C-C2H6 = -44.0 per mil (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 x 10**6 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.
Resumo:
Date of Acceptance: 21/09/2015 This study was funded by NHS Health Scotland. The opinions expressed in this paper as those of the authors alone and are not necessarily those of NHS Health Scotland. The funders had no role in the conduct of the research.
Resumo:
Date of Acceptance: 21/09/2015 This study was funded by NHS Health Scotland. The opinions expressed in this paper as those of the authors alone and are not necessarily those of NHS Health Scotland. The funders had no role in the conduct of the research.
Resumo:
Date of Acceptance: 10/01/2016
Resumo:
Acknowledgements The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Research Hub; award reference: EP/G066051/1. Further, we would like to acknowledge the RCUK research grant EP/J000604/2.
Resumo:
Acknowledgements The authors acknowledge the projects supported by the National Basic Research Program of China (973 Project)(No. 2015CB057405) and the National Natural Science Foundation of China (No. 11372082) and the State Scholarship Fund of CSC. DW thanks for the hospitality of the University of Aberdeen.
Resumo:
Due to high-speed rotation, the problems about rotor mechanics and dynamics for outer rotor high-speed machine are more serious than conventional ones, in view of above problems the mechanical and dynamics analysis for an outer rotor high-speed permanent magnet claw pole motor are carried out. The rotor stress analytical calculation model was derived, then the stress distribution is calculated by finite element method also, which is coincided with that calculated by analytical model. In addition, the stress distribution of outer rotor yoke and PMs considering centrifugal force and temperature effect has been calculated, some influence factors on rotor stress distribution have been analyzed such as pole-arc coefficient and speed. The rotor natural frequency and critical speed were calculated by vibration mode analysis, and its dynamics characteristics influenced by gyroscope effect were analyzed based on Campbell diagram. Based on the analysis results above an outer rotor permanent magnet high-speed claw pole motor is design and verified.
Resumo:
Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.