915 resultados para WATER CONSUMPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol use disorders (AUDs) impact millions of individuals and there remain few effective treatment strategies. Despite evidence that neuronal nicotinic acetylcholine receptors (nAChRs) have a role in AUDs, it has not been established which subtypes of the nAChR are involved. Recent human genetic association studies have implicated the gene cluster CHRNA3-CHRNA5-CHRNB4 encoding the α3, α5, and β4 subunits of the nAChR in susceptibility to develop nicotine and alcohol dependence; however, their role in ethanol-mediated behaviors is unknown due to the lack of suitable and selective research tools. To determine the role of the α3, and β4 subunits of the nAChR in ethanol self-administration, we developed and characterized high-affinity partial agonists at α3β4 nAChRs, CP-601932, and PF-4575180. Both CP-601932 and PF-4575180 selectively decrease ethanol but not sucrose consumption and operant self-administration following long-term exposure. We show that the functional potencies of CP-601932 and PF-4575180 at α3β4 nAChRs correlate with their unbound rat brain concentrations, suggesting that the effects on ethanol self-administration are mediated via interaction with α3β4 nAChRs. Also varenicline, an approved smoking cessation aid previously shown to decrease ethanol consumption and seeking in rats and mice, reduces ethanol intake at unbound brain concentrations that allow functional interactions with α3β4 nAChRs. Furthermore, the selective α4β2(*) nAChR antagonist, DHβE, did not reduce ethanol intake. Together, these data provide further support for the human genetic association studies, implicating CHRNA3 and CHRNB4 genes in ethanol-mediated behaviors. CP-601932 has been shown to be safe in humans and may represent a potential novel treatment for AUDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower fruit and vegetable intake among socioeconomically disadvantaged groups has been well documented, and may be a consequence of a higher consumption of take-out foods. This study examined whether, and to what extent, take-out food consumption mediated (explained) the association between socioeconomic position and fruit and vegetable intake. A cross-sectional postal survey was conducted among 1500 randomly selected adults aged 25–64 years in Brisbane, Australia in 2009 (response rate = 63.7%, N = 903). A food frequency questionnaire assessed usual daily servings of fruits and vegetables (0 to 6), overall take-out consumption (times/week) and the consumption of 22 specific take-out items (never to ≥once/day). These specific take-out items were grouped into “less healthy” and “healthy” choices and indices were created for each type of choice (0 to 100). Socioeconomic position was ascertained by education. The analyses were performed using linear regression, and a bootstrap re-sampling approach estimated the statistical significance of the mediated effects. Mean daily serves of fruits and vegetables was 1.89 (SD 1.05) and 2.47 (SD 1.12) respectively. The least educated group were more likely to consume fewer serves of fruit (B= –0.39, p<0.001) and vegetables (B= –0.43, p<0.001) compared with the highest educated. The consumption of “less healthy” take-out food partly explained (mediated) education differences in fruit and vegetable intake; however, no mediating effects were observed for overall and “healthy” take-out consumption. Regular consumption of “less healthy” take-out items may contribute to socioeconomic differences in fruit and vegetable intake, possibly by displacing these foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is worldwide interest in reducing aircraft emissions. The difficulty of reducing emissions including water vapour, carbon dioxide (CO2) and oxides of nitrogen (NOx) is mainly due from the fact that a commercial aircraft is usually designed for a particular optimal cruise altitude but may be requested or required to operate and deviate at different altitude and speeds to archive a desired or commanded flight plan, resulting in increased emissions. This is a multi- disciplinary problem with multiple trade-offs such as optimising engine efficiency, minimising fuel burnt, minimise emissions while maintaining aircraft separation and air safety. This project presents the coupling of an advanced optimisation technique with mathematical models and algorithms for aircraft emission reduction through flight optimisation. Numerical results show that the method is able to capture a set of useful trade-offs between aircraft range and NOx, and mission fuel consumption and NOx. In addition, alternative cruise operating conditions including Mach and altitude that produce minimum NOx and CO2 (minimum mission fuel weight) are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.