901 resultados para Visual selective attention
Resumo:
The novel pyrazolo[3,4-d]pyrimidine compound GU285 (4-amino-6-alpha-carbamoylethylthio-1- phenylpyrazolo[3,4-d]pyrimidine, CAS 134896-40-5) was examined for its ability (1) to inhibit binding of adenosine (ADO) receptor ligands in rat brain membranes, (2) to antagonise functional responses to ADO agonists in rat right and left atria and coronary resistance vessels, and (3) to reduce the fall in heart rate and arterial blood pressure produced by the ADO A1 agonist N6-cyclopentyladenosine (CPA) in the intact, anaesthetized rat. GU285 competitively inhibited binding of the ADO A1 agonist [3H]-R-N6-phenylisopropyladenosine (R-PIA) yielding a Ki value of 11 (7-18) nmol.l-1 (geometric mean +/- 95% Cl). When assayed against the ADO A2A selective agonist [3H]-2-[p-(2-carboxyethyl)- phenethylamino]-5'-N-ethylcarboxamidoadenosine, (CGS21680), a Ki of 15 (10-24) nmol.l-1 was obtained. In spontaneously beating right atria, GU285 competitively antagonized negative chronotropic effects of R-PIA with a pA2 of 8.7 +/- 0.3 and in electrically paced left atria, GU285 competitively antagonized negative inotropic effects of R-PIA with a pA2 of 9.0 +/- 0.1. In the potassium-arrested, perfused rat heart GU285 (1 mumol.l-1) antagonized only the high sensitivity, ADO A2B mediated component of the biphasic relaxation of the coronary vasculature produced by NECA. The low sensitivity component was unchanged. GU285 (1 mumol.kg-1) antagonized the negative chronotropic and hypotensive effects of the adenosine A1 agonist CPA in anaesthetized rats, producing a 10-fold rightward shift in the dose-response relationship. These data demonstrate that in the rat, GU285 is a potent, non-selective adenosine receptor antagonist that maintains its activity in vivo.
Resumo:
Vanessa Mafe-Keane was invited to participate as choreographer in Iranian singer Shirin Madg 's project, Rebirth: Combined art performance. This project integrated singing, music, visual-art, film, dance and is based on the dissident poetry of female Iranian poet, Forough Farrokhzad. The choreographic dance movement focused on simple, lyrical, flowing classical dance forms that also incorporated everyday gestures and actions performed by two Queensland dancers, Caitlin MacKenzie and Abby Johnson. The choreographic intention was not to attempt to re-create Iranian dance practices instead, to draw inspiration and reference specific movement qualities. This was achieved through the subtle inclusion of spinning movements and focusing attention on the dancers’ arms and upper torso. This fusion became an underlying theme reflected throughout the choreographic component. Additionally, this project presented an opportunity to draw on past experiences and problem-solve ways to construct choreographic work where the dancers and the musical assemble group could be staged side by side. This experience highlighted differing approaches to rehearsal protocols within disciplines, the practicalities of staging different artists, understanding musical cues and the diversity of audience engagement. Performances: BEMAC Multicultural Centre, Brisbane 06 February 2015 and Helensvale Cultural Centre, Gold Coast 07 February 2015
Resumo:
Social media is now an integral part of modern sports broadcasting, which combines old and new media into a redefined and multidimensional experience for fans. The popularity of social media has particular implications for professional women's sports due to this convergence, and may be utilised by organisations to address some of the issues women's sports face from a lack of traditional broadcast coverage. This article discusses Twitter activity surrounding the ANZ Championship netball competition and analyses the ways social media can help transcend the structural challenges that “old” media has placed on professional women's sports.
Resumo:
New product innovation has been identified as the key to firms' marketplace success, profit and survival. Yet, the failure rate for new products is high. Because of the high costs associated with new product development, there is considerable theoretical and managerial interest in how to minimize the high failure rates of new products and what separates new product winners from losers. This study focuses on individual level ambidexterity – namely head of the R&D departments' capacity to engage in creativity and attention-to-detail simultaneously, a skill involving different centers of attention, and relying on somewhat incompatible behaviors and processes. The ability to engage in these behaviors simultaneously is seen as being ambidextrous. Drawing from the data of 150 advanced manufacturing firms in India (gathered from one CEO and one head of the R&D department for each firm), the results show that when an individual head of R&D engages heavily only in creativity, too many new, risky ideas may come and when he/she engages heavily only in attention-to-detail, he/she may suffer through a lack of novel ideas. Both approaches limit individual's contribution to enhancing product innovation – financial performance relationship. The results also show that an individual head of R&D needs to engage in high levels creativity and attention-to-detail in the pursuit of enhancing product innovation to achieve superior financial performance.
Resumo:
This paper addresses the role of photography as a documentary medium and how this forms a basis for my practice-led studio investigations. In it, I will explore how photography is used to create histories and sustain specific notions of ‘legacy’ within the context of the family photo album. Family history is often based on stories to which the photo album provides a visual point of reference. Despite the ostensible ‘objectivity’ of the family photograph though it is nonetheless as subjective as the stories that surround it. In this way, the photo album perpetuates a hegemony of truth that obscures the fragmentary and highly selective nature of these documents and stories. The result is that every photo album implicitly documents the gaps or voids present in understandings of our own histories. Homi Bhabha refers to these kinds of voids as ‘disjunctive historical spaces’ – spaces of slippage that create the opportunity for new narratives and understandings to occur. Using Bhabha’s ideas as a chief point of reference, I will explore how these voids or gaps in information – and the opportunities for re-examination that they open up - can be explored through contemporary photomedia. Digital technologies such as camera phones and scanners generate a space in which photography’s own documentary conventions can be turned in on themselves to create a subterfuge. My current studio-based research involves using the scanner to navigate through my family’s sometimes-‘occulted’ history, in order to explore, document and recover my connection to this narrative. I am primarily interested in the scanner as a tool for capturing not simply surfaces, but objects, moments or movements in time. Objects or moments captured by the scanner can often be simultaneously distorted and consolidated, blurred and sharpened. This paper will propose that this ‘slippage’, literally expressed in the disruption of the pixelated field, can be used to create a space in which alternative readings or understandings of past events can be explored and new narratives produced.
Resumo:
The research reported here addresses the problem of detecting and tracking independently moving objects from a moving observer in real-time, using corners as object tokens. Corners are detected using the Harris corner detector, and local image-plane constraints are employed to solve the correspondence problem. The approach relaxes the restrictive static-world assumption conventionally made, and is therefore capable of tracking independently moving and deformable objects. Tracking is performed without the use of any 3-dimensional motion model. The technique is novel in that, unlike traditional feature-tracking algorithms where feature detection and tracking is carried out over the entire image-plane, here it is restricted to those areas most likely to contain-meaningful image structure. Two distinct types of instantiation regions are identified, these being the “focus-of-expansion” region and “border” regions of the image-plane. The size and location of these regions are defined from a combination of odometry information and a limited knowledge of the operating scenario. The algorithms developed have been tested on real image sequences taken from typical driving scenarios. Implementation of the algorithm using T800 Transputers has shown that near-linear speedups are achievable, and that real-time operation is possible (half-video rate has been achieved using 30 processing elements).
Resumo:
The research reported here addresses the problem of detecting and tracking independently moving objects from a moving observer in real time, using corners as object tokens. Local image-plane constraints are employed to solve the correspondence problem removing the need for a 3D motion model. The approach relaxes the restrictive static-world assumption conventionally made, and is therefore capable of tracking independently moving and deformable objects. The technique is novel in that feature detection and tracking is restricted to areas likely to contain meaningful image structure. Feature instantiation regions are defined from a combination of odometry informatin and a limited knowledge of the operating scenario. The algorithms developed have been tested on real image sequences taken from typical driving scenarios. Preliminary experiments on a parallel (transputer) architecture indication that real-time operation is achievable.
Resumo:
The literacy demands of mathematics are very different to those in other subjects (Gough, 2007; O'Halloran, 2005; Quinnell, 2011; Rubenstein, 2007) and much has been written on the challenges that literacy in mathematics poses to learners (Abedi and Lord, 2001; Lowrie and Diezmann, 2007, 2009; Rubenstein, 2007). In particular, a diverse selection of visuals typifies the field of mathematics (Carter, Hipwell and Quinnell, 2012), placing unique literacy demands on learners. Such visuals include varied tables, graphs, diagrams and other representations, all of which are used to communicate information.
Resumo:
We report rapid and ultra-sensitive detection system for 2,4,6-trinitrotoluene (TNT) using unmodified gold nanoparticles and surface-enhanced Raman spectroscopy (SERS). First, Meisenheimer complex has been formed in aqueous solution between TNT and cysteamine in less than 15 min of mixing. The complex formation is confirmed by the development of a pink colour and a new UV–vis absorption band around 520 nm. Second, the developed Meisenheimer complex is spontaneously self-assembled onto unmodified gold nanoparticles through a stable Au–S bond between the cysteamine moiety and the gold surface. The developed mono layer of cysteamine-TNT is then screened by SERS to detect and quantify TNT. Our experimental results demonstrate that the SERS-based assay provide an ultra-sensitive approach for the detection of TNT down to 22.7 ng/L. The unambiguous fingerprint identification of TNT by SERS represents a key advantage for our proposed method. The new method provides high selectivity towards TNT over 2,4 DNT and picric acid. Therefore it satisfies the practical requirements for the rapid screening of TNT in real life samples where the interim 24-h average allowable concentration of TNT in waste water is 0.04 mg/L.
Resumo:
This paper presents visual detection and classification of light vehicles and personnel on a mine site.We capitalise on the rapid advances of ConvNet based object recognition but highlight that a naive black box approach results in a significant number of false positives. In particular, the lack of domain specific training data and the unique landscape in a mine site causes a high rate of errors. We exploit the abundance of background-only images to train a k-means classifier to complement the ConvNet. Furthermore, localisation of objects of interest and a reduction in computation is enabled through region proposals. Our system is tested on over 10km of real mine site data and we were able to detect both light vehicles and personnel. We show that the introduction of our background model can reduce the false positive rate by an order of magnitude.
Resumo:
Uncorrected refractive error, including astigmatism, is a leading cause of reversible visual impairment. While the ability to perform vision-related daily activities is reduced when people are not optimally corrected, only limited research has investigated the impact of uncorrected astigmatism. Given the capacity to perform vision-related daily activities involves integration of a range of visual and cognitive cues, this research examined the impact of simulated astigmatism on visual tasks that also involved cognitive input. The research also examined whether the higher levels of complexity inherent in Chinese characters makes them more susceptible to the effects of astigmatism. The effects of different powers of astigmatism, as well as astigmatism at different axes were investigated in order to determine the minimum level of astigmatism that resulted in a decrement in visual performance.
Resumo:
Due to the numerous possibilities of voicing concerns and the flood of data we are exposed to, local issues are sometimes at risk of being overlooked. This study explores Local Commons, a design intervention in public space that combines situated digital and tangible media in order to engage communities in contributing and debating different perspectives on a given local issue. The intervention invited the community to submit images of their perspectives on the issue, which were displayed on a public screen. Via tangible buttons in front of the screen, community members then agree or disagree on the displayed perspectives, creating a space for deliberation. In a user study, we were specifically interested in testing three aspects of our intervention, which are discussed in this paper: The difference that situatedness, visual content, and tangible interaction can make to urban community engagement.
Resumo:
Introduction Different types of hallucinations are symptomatic of different conditions. Schizotypal hallucinations are unique in that they follow existing delusional narrative patterns: they are often bizarre, they are generally multimodal, and they are particularly vivid (the experience of a newsreader abusing you personally over the TV is both visual and aural. Patients who feel and hear silicone chips under their skin suffer from haptic hallucinations as well as aural ones, etc.) Although there are a number of hypotheses for hallucinations, few cogently grapple the sheer bizarreness of the ones experienced in schizotypal psychosis. Methods A review-based hypothesis, traversing theory from the molecular level to phenomenological expression as a distinct and recognizable symptomatology. Conclusion Hallucinations appear to be caused by a two-fold dysfunction in the mesofrontal dopamine pathway, which is considered here to mediate attention of different types: in the anterior medial frontal lobe, the receptors (largely D1 type) mediate declarative awareness, whereas the receptors in the striatum (largely D2 type) mediate latent awareness of known schemata. In healthy perception, most of the perceptual load is performed by the latter: by the top-down predictive and mimetic engine, with the bottom-up mechanism being used as a secondary tool to bring conscious deliberation to stimuli that fails to match up against expectations. In schizophrenia, the predictive mode is over-stimulated, while the bottom-up feedback mechanism atrophies. The dysfunctional distribution pattern effectively confines dopamine activity to the striatum, thereby stimulating the structural components of thought and behaviour: well-learned routines, narrative structures, lexica, grammar, schemata, archetypes, and other procedural resources. Meanwhile, the loss of activity in the frontal complex reduces the capacity for declarative awareness and for processing anything that fails to meet expectations.
Resumo:
This research investigated the visual demands in modern primary school classrooms and also the impact of common refractive anomalies on a child's ability to perform academic-related tasks. The results showed that relatively high levels of visual acuity, contrast demand and sustained accommodative-convergence are required to perform optimally in the modern classroom environment. It was also demonstrated that relatively low magnitudes of uncorrected refractive error may have a detrimental impact on children's ability to perform academic-related activities at school, with sustained near work further exacerbating this effect. These findings have important implications for both eye care practitioners and education authorities.
Resumo:
This project developed a visual strategy and graphic outcomes to communicate the results of a scientific collaborative project to the Mackay community. During 2013 and 2014 a team from CSIRO engaged with the community in Mackay to collaboratively develop a set of strategies to improve the management of the Great Barrier Reef. The result of this work was a 300+ page scientific report that needed to be translated and summarised to the general community. The aim of this project was to strategically synthesise information contained in the report and to design and produce an outcome to be distributed to the participant community. By working with the CISRO researchers, an action toolkit was developed, with twelve cards and a booklet. Each card represented the story behind a certain local management issue and the actions that the participants suggested should be taken in order to improve management of The Reef. During the design synthesis it was identified that for all management issues there was a reference to the need to develop some sort of "educational campaign" to the area. That was then translated as an underlying action to support all other actions proposed in the toolkit.