927 resultados para User Profiling
Resumo:
BACKGROUND: Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.
METHODS: HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity Pathway Analysis.
RESULTS: Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.
CONCLUSION: This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.
Resumo:
This study was designed to analyze the gender-related association between SCN1A polymorphisms (voltage-gated sodium channels; α-subunit) and time-to-recurrence (TTR) in patients with colorectal cancer (CRC) treated with 5-fluoruracil (5-FU)-based adjuvant chemotherapy. We enrolled from a prospective database patients with stage II and III CRC treated with adjuvant 5-FU-based chemotherapy. Genotypes for SCN1A rs3812718 and rs229877 were determined by direct DNA sequencing. One hundred twenty-seven males and 107 females were included in the study. In the univariate and multivariate analysis, the shortest TTR was associated with female patients carrying the rs3812718-TT genotype (hazard ratio (HR): 2.26 (95% confidence interval (CI): 0.89, 5.70), P=0.039) but with male patients carrying the rs3812718-CC genotype (HR: 0.49 (95% CI: 0.18, 1.38), P=0.048). For rs229877 the CT genotype was associated with a trend for shorter TTR in both gender populations. The study validated gender-dependent association between genomic SCN1A rs3812718 polymorphism and TTR in CRC patients treated with adjuvant 5-FU-based chemotherapy. This study confirms that voltage-gated Na+ channels may be a potential therapeutic target and a useful predictive biomarker before 5-FU infusion.
Resumo:
PURPOSE: There is substantial germline genetic variability within angiogenesis pathway genes, thereby causing interindividual differences in angiogenic capacity and resistance to antiangiogenesis therapy. We investigated germline polymorphisms in genes involved in VEGF-dependent and -independent angiogenesis pathways to predict clinical outcome and tumor response in metastatic colorectal cancer (mCRC) patients treated with bevacizumab and oxaliplatin-based chemotherapy.
EXPERIMENTAL DESIGN: A total of 132 patients treated with first-line bevacizumab and FOLFOX or XELOX were included in this study. Genomic DNA was isolated from whole-blood samples by PCR-RFLP or direct DNA sequencing. The endpoints of the study were progression-free survival (PFS), overall survival (OS), and response rate (RR).
RESULTS: The minor alleles of EGF rs444903 A>G and IGF-1 rs6220 A>G were associated with increased OS and remained significant in multivariate Cox regression analysis (HR: 0.52; 95% CI: 0.31-0.87; adjusted P = 0.012 and HR: 0.60; 95% CI: 0.36-0.99; adjusted P = 0.046, respectively). The minor allele of HIF1α rs11549465 C>T was significantly associated with increased PFS but lost its significance in multivariate analysis. CXCR1 rs2234671 G>C, CXCR2 rs2230054 T>C, EGFR rs2227983 G>A, and VEGFR-2 rs2305948 C>T predicted tumor response, with CXCR1 rs2234671 G>C remaining significant in multiple testing (P(act) = 0.003).
CONCLUSION: In this study, we identified common germline variants in VEGF-dependent and -independent angiogenesis genes predicting clinical outcome and tumor response in patients with mCRC receiving first-line bevacizumab and oxaliplatin-based chemotherapy.
Resumo:
AIMS: Survival and response rates in metastatic colorectal cancer remain poor, despite advances in drug development. There is increasing evidence to suggest that gender-specific differences may contribute to poor clinical outcome. We tested the hypothesis that genomic profiling of metastatic colorectal cancer is dependent on gender.
MATERIALS & METHODS: A total of 152 patients with metastatic colorectal cancer who were treated with oxaliplatin and continuous infusion 5-fluorouracil were genotyped for 21 polymorphisms in 13 cancer-related genes by PCR. Classification and regression tree analysis tested for gender-related association of polymorphisms with overall survival, progression-free survival and tumor response.
RESULTS: Classification and regression tree analysis of all polymorphisms, age and race resulted in gender-specific predictors of overall survival, progression-free survival and tumor response. Polymorphisms in the following genes were associated with gender-specific clinical outcome: estrogen receptor β, EGF receptor, xeroderma pigmentosum group D, voltage-gated sodium channel and phospholipase A2.
CONCLUSION: Genetic profiling to predict the clinical outcome of patients with metastatic colorectal cancer may depend on gender.
Resumo:
CCTV (Closed-Circuit TeleVision) systems are broadly deployed in the present world. To ensure in-time reaction for intelligent surveillance, it is a fundamental task for real-world applications to determine the gender of people of interest. However, normal video algorithms for gender profiling (usually face profiling) have three drawbacks. First, the profiling result is always uncertain. Second, the profiling result is not stable. The degree of certainty usually varies over time, sometimes even to the extent that a male is classified as a female, and vice versa. Third, for a robust profiling result in cases that a person’s face is not visible, other features, such as body shape, are required. These algorithms may provide different recognition results - at the very least, they will provide different degrees of certainties. To overcome these problems, in this paper, we introduce an Dempster-Shafer (DS) evidential approach that makes use of profiling results from multiple algorithms over a period of time, in particular, Denoeux’s cautious rule is applied for fusing mass functions through time lines. Experiments show that this approach does provide better results than single profiling results and classic fusion results. Furthermore, it is found that if severe mis-classification has occurred at the beginning of the time line, the combination can yield undesirable results. To remedy this weakness, we further propose three extensions to the evidential approach proposed above incorporating notions of time-window, time-attenuation, and time-discounting, respectively. These extensions also applies Denoeux’s rule along with time lines and take the DS approach as a special case. Experiments show that these three extensions do provide better results than their predecessor when mis-classifications occur.
Resumo:
Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.
Resumo:
Background: In healthy tissues a family of enzymes known as matrix metalloproteinases (MMPs) play an important role in regulating turnover and metabolism of connective tissue collagen. MMPs have been implicated in a wide variety of pathological conditions including periodontal disease. MMP-8 has been extensively studied in periodontal health and disease using enzyme-linked immunosorbent assay (ELISA). Although ELISA quantifies the presence of the MMP-8 protein, it is not possible to determine enzyme activity using this method. Furthermore, since members of the MMP family have poor substrate sequence specificity, a peptide substrate alone cannot differentiate the activity of MMP-8 from other MMPs that may be present in biological samples. Objectives: In the present study, a method to specifically measure MMP-8 activity in gingival crevicular fluid (GCF) samples was developed. Methods: GCF was collected from healthy patients and those with periodontal disease using Perio paper strips. Samples were stored frozen until required for analysis. A specific MMP-8 antibody was used to coat 96 well microtitre plates to selectively remove MMP-8 from the GCF samples. Following a washing step, the activity of bound MMP-8 was measured over 70 minutes using a fluorogenic (FRET) substrate. Results: GCF from healthy subjects exhibited basal MMP-8 activity but in diseased samples MMP-8 activity was significantly higher. Minimal binding of other recombinant MMPs to the specific MMP-8 antibody was observed in cross-reactivity studies. Conclusion: We show for the first time that MMP-8 activity was significantly increased in GCF from periodontitis sites compared with activity levels in healthy sites. Further studies of MMP-8 activity in GCF samples should improve our understanding of its destructive role in periodontal disease.
Resumo:
We present two physical layer secure transmission schemes for multi-user multi-relay networks, where the communication from M users to the base station is assisted by direct links and by N decode-and-forward relays. In this network, we consider that a passive eavesdropper exists to overhear the transmitted information, which entails exploiting the advantages of both direct and relay links for physical layer security enhancement. To fulfill this requirement, we investigate two criteria for user and relay selection and examine the achievable secrecy performance. Criterion I performs a joint user and relay selection, while Criterion II performs separate user and relay selections, with a lower implementation complexity. We derive a tight lower bound on the secrecy outage probability for Criterion I and an accurate analytical expression for the secrecy outage probability for Criterion II. We further derive the asymptotic secrecy outage probabilities at high transmit signal-to-noise ratios and high main-to-eavesdropper ratios for both criteria. We demonstrate that the secrecy diversity order is min (MN, M + N) for Criterion I, and N for Criterion II. Finally, we present numerical and simulation results to validate the proposed analysis, and show the occurrence condition of the secrecy outage probability floor