984 resultados para UML (INFORMATICA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generic programming is likely to become a new challenge for a critical mass of developers. Therefore, it is crucial to refine the support for generic programming in mainstream Object-Oriented languages — both at the design and at the implementation level — as well as to suggest novel ways to exploit the additional degree of expressiveness made available by genericity. This study is meant to provide a contribution towards bringing Java genericity to a more mature stage with respect to mainstream programming practice, by increasing the effectiveness of its implementation, and by revealing its full expressive power in real world scenario. With respect to the current research setting, the main contribution of the thesis is twofold. First, we propose a revised implementation for Java generics that greatly increases the expressiveness of the Java platform by adding reification support for generic types. Secondly, we show how Java genericity can be leveraged in a real world case-study in the context of the multi-paradigm language integration. Several approaches have been proposed in order to overcome the lack of reification of generic types in the Java programming language. Existing approaches tackle the problem of reification of generic types by defining new translation techniques which would allow for a runtime representation of generics and wildcards. Unfortunately most approaches suffer from several problems: heterogeneous translations are known to be problematic when considering reification of generic methods and wildcards. On the other hand, more sophisticated techniques requiring changes in the Java runtime, supports reified generics through a true language extension (where clauses) so that backward compatibility is compromised. In this thesis we develop a sophisticated type-passing technique for addressing the problem of reification of generic types in the Java programming language; this approach — first pioneered by the so called EGO translator — is here turned into a full-blown solution which reifies generic types inside the Java Virtual Machine (JVM) itself, thus overcoming both performance penalties and compatibility issues of the original EGO translator. Java-Prolog integration Integrating Object-Oriented and declarative programming has been the subject of several researches and corresponding technologies. Such proposals come in two flavours, either attempting at joining the two paradigms, or simply providing an interface library for accessing Prolog declarative features from a mainstream Object-Oriented languages such as Java. Both solutions have however drawbacks: in the case of hybrid languages featuring both Object-Oriented and logic traits, such resulting language is typically too complex, thus making mainstream application development an harder task; in the case of library-based integration approaches there is no true language integration, and some “boilerplate code” has to be implemented to fix the paradigm mismatch. In this thesis we develop a framework called PatJ which promotes seamless exploitation of Prolog programming in Java. A sophisticated usage of generics/wildcards allows to define a precise mapping between Object-Oriented and declarative features. PatJ defines a hierarchy of classes where the bidirectional semantics of Prolog terms is modelled directly at the level of the Java generic type-system.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trent’anni or sono il concetto di ottimalità venne formulato in senso teorico da Lévy, ma solo un decennio dopo Lamping riesce a darne elegante implementazione algoritmica. Realizza un sistema di riduzione su grafi che si scoprirà poi avere interessanti analogie con la logica lineare presentata nello stesso periodo da Girard. Ma l’ottimalità è davvero ottimale? In altre parole, l’implementazione ottimale del λ calcolo realizzata attraverso i grafi di condivisione, è davvero la migliore strategia di riduzione, in termini di complessità? Dopo anni di infondati dubbi e di immeritato oblìo, alla conferenza LICS del 2007, Baillot, Coppola e Dal Lago, danno una prima risposta positiva, seppur parziale. Considerano infatti il caso particolare delle logiche affini elementare e leggera, che possiedono interessanti proprietà a livello di complessità intrinseca e semplificano l’arduo problema. La prima parte di questa tesi presenta, in sintesi, la teoria dell’ottimalità e la sua implementazione condivisa. La seconda parte affronta il tema della sua complessità, a cominciare da una panoramica dei più importanti risultati ad essa legati. La successiva introduzione alle logiche affini, e alle relative caratteristiche, costituisce la necessaria premessa ai due capitoli successivi, che presentano una dimostrazione alternativa ed originale degli ultimi risultati basati appunto su EAL e LAL. Nel primo dei due capitoli viene definito un sistema intermedio fra le reti di prova delle logiche e la riduzione dei grafi, nel secondo sono dimostrate correttezza ed ottimalità dell’implementazione condivisa per mezzo di una simulazione. Lungo la trattazione sono offerti alcuni spunti di riflessione sulla dinamica interna della β riduzione riduzione e sui suoi legami con le reti di prova della logica lineare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli smartphone, sono dispositivi per la telefonia mobile che oramai includono una serie di funzionalità a supporto della multimedialità e non solo. Divenuti quasi dei notebook in miniatura, ne esistono di vari tipi e dimensioni e anche se la loro potenza di calcolo rimane di gran lunga inferiore a quella di un PC, riescono comunque a effettuare operazioni abbastanza evolute e con prestazioni accettabili. Quello che si vuole realizzare con questo lavoro non è uno studio su questi dispositivi (anche se in parte sarà affrontato), ma un approfondimento sulla possibilità di utilizzare una buona fetta di essi, a supporto dello sviluppo turistico nel nostro paese. In particolare si vuole realizzare una piattaforma mobile che metta in comunicazione individui che vogliono fornire informazione di tipo turistico (beni culturali, eventi, attività commerciali, ecc.) con individui che vogliono fruire di tali contenuti (un qualsiasi turista che sia in grado di utilizzare uno smartphone). Tale applicazione dovrà raccogliere informazioni su una determinata città e riuscire in maniera chiara e intuitiva a dare risposte alle principali domande che un turista si pone: • dove sono? • Cosa c’è d’interessante da visitare nei dintorni? • Interessante questa statua! Di cosa si tratta? • Quali sono gli eventi più interessanti ai quali potrei partecipare? • Ho un leggero appetito dove posso andare a mangiare? • Dove posso fare un po’ di shopping?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nel corso del presente studio si è cercato di capire quale potesse essere la normativa applicabile ai vari tipi di contratto elettronici analizzati, sia dal punto di vista del diverso modello contrattuale e sia dal punto di vista del soggetto, come parte del contratto. Infatti, proprio la peculiare logica delle norme poste a tutela del consumatore giustifica un separato approfondimento degli aspetti riguardanti i contratti conclusi tra operatori professionali, contratti business to business e quelli di cui sia parte un consumatore, contratti business to consumer. Sulla base di questi aspetti soggettivi e contrattuali, è stata analizzate la normativa comunitaria di riferimento, dal regolamento n. 44 del 2001 alla direttiva comunitaria 2000/31/CE. Si sono affrontati anche gli aspetti relativi alle norme di derivazione Uncitral, dalla Model Law del 1996 alla Convenzione del 2005 sulle comunicazioni elettroniche nella contrattazione internazionale, le norme di soft law, dalla Nuova lex mercatoria ai Principi Unidroit alle Linee Guida OCSE e la loro interazione con il commercio elettronico. In seguito, si è analizzata la convenzione di Roma sulle obbligazioni contrattuali e il regolamento Roma I, le loro differenze e la loro diretta applicabilità, se esiste, con il commercio elettronico. In particolare, il Regolamento Roma I ha, nella maggior parte delle sue disposizioni, riproposto quanto contenuto nella convenzione di Roma, però in chiave moderna, apportando delle innovazioni nel commercio elettronico internazionale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of research of this dissertation concerns the bioengineering of exercise, in particular the relationship between biomechanical and metabolic knowledge. This relationship can allow to evaluate exercise in many different circumstances: optimizing athlete performance, understanding and helping compensation in prosthetic patients and prescribing exercise with high caloric consumption and minimal joint loading to obese subjects. Furthermore, it can have technical application in fitness and rehabilitation machine design, predicting energy consumption and joint loads for the subjects who will use the machine. The aim of this dissertation was to further understand how mechanical work and metabolic energy cost are related during movement using interpretative models. Musculoskeletal models, when including muscle energy expenditure description, can be useful to address this issue, allowing to evaluate human movement in terms of both mechanical and metabolic energy expenditure. A whole body muscle-skeletal model that could describe both biomechanical and metabolic aspects during movement was identified in literature and then was applied and validated using an EMG-driven approach. The advantage of using EMG driven approach was to avoid the use of arbitrary defined optimization functions to solve the indeterminate problem of muscle activations. A sensitivity analysis was conducted in order to know how much changes in model parameters could affect model outputs: the results showed that changing parameters in between physiological ranges did not influence model outputs largely. In order to evaluate its predicting capacity, the musculoskeletal model was applied to experimental data: first the model was applied in a simple exercise (unilateral leg press exercise) and then in a more complete exercise (elliptical exercise). In these studies, energy consumption predicted by the model resulted to be close to energy consumption estimated by indirect calorimetry for different intensity levels at low frequencies of movement. The use of muscle skeletal models for predicting energy consumption resulted to be promising and the use of EMG driven approach permitted to avoid the introduction of optimization functions. Even though many aspects of this approach have still to be investigated and these results are preliminary, the conclusions of this dissertation suggest that musculoskeletal modelling can be a useful tool for addressing issues about efficiency of movement in healthy and pathologic subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smart Environments are currently considered a key factor to connect the physical world with the information world. A Smart Environment can be defined as the combination of a physical environment, an infrastructure for data management (called Smart Space), a collection of embedded systems gathering heterogeneous data from the environment and a connectivity solution to convey these data to the Smart Space. With this vision, any application which takes advantages from the environment could be devised, without the need to directly access to it, since all information are stored in the Smart Space in a interoperable format. Moreover, according to this vision, for each entity populating the physical environment, i.e. users, objects, devices, environments, the following questions can be arise: “Who?”, i.e. which are the entities that should be identified? “Where?” i.e. where are such entities located in physical space? and “What?” i.e. which attributes and properties of the entities should be stored in the Smart Space in machine understandable format, in the sense that its meaning has to be explicitly defined and all the data should be linked together in order to be automatically retrieved by interoperable applications. Starting from this the location detection is a necessary step in the creation of Smart Environments. If the addressed entity is a user and the environment a generic environment, a meaningful way to assign the position, is through a Pedestrian Tracking System. In this work two solution for these type of system are proposed and compared. One of the two solution has been studied and developed in all its aspects during the doctoral period. The work also investigates the problem to create and manage the Smart Environment. The proposed solution is to create, by means of natural interactions, links between objects and between objects and their environment, through the use of specific devices, i.e. Smart Objects

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.