825 resultados para Tungsten alloys
Resumo:
Tungsten coil atomic emission spectrometry is an ideal technique for field applications because of its simplicity, low cost, low power requirement, and independence from cooling systems. A new, portable, compact design is reported here. The tungsten coil is extracted from an inexpensive 24 V, 250 W commercial light bulb. The coil is housed in a small, aluminum cell. The emission signal exits from a small aperture in the cell, while the bulk of the blackbody emission from the tungsten coil is blocked. The resulting spectra exhibit extremely low background signals. The atomization cell, a single lens, and a hand-held charge coupled device (CCD) spectrometer are fixed on a 1 x 6 x 30 cm ceramic base. The resulting system is robust and easily transported. A programmable, miniature 400 W solid-state constant current power supply controls the temperature of the coil. Fifteen elements are determined with the system (Ba, Cs, Li, Rb, Cr, Sr, Eu, Yb, Mn, Fe, Cu, Mg, V, Al, and Ga). The precision ranges from 4.3% to 8.4% relative standard deviation for repetitive measurements of the same solution. Detection limits are in the 0.04 to 1500 mu g/L range. Accuracy is tested using standard reference materials for polluted water, peach leaves, and tomato leaves. For those elements present above the detection limit, recoveries range from 72% to 147%.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, vitreous samples were prepared in the binary system (100 - x)NaPO3-xMO(3) with M = Mo and W and x varying from 10 to 60. The transmittance properties in the UV, visible, and near-infrared were monitored as a function of MO3 concentration. In both cases, an increase in the amount of transition metal results in an intense and broad absorption band in the visible and near-infrared attributed to metal reduction under synthesis conditions. It was shown that this large absorption can be partially or totally removed using specific oxidizing agents or by improving synthesis parameters such as melting temperature or cooling rate of the melt. In addition, structural investigations by Raman and X-ray absorption spectroscopy suggest that reduction only occurs when the metal cation is in octahedral geometry and that the transmittance improvement is not related with any structural changes. These results were explained in terms of thermodynamic equilibrium of redox species in the melt and allowed to obtain for the first time transparent and chemically stable glasses containing high concentrations of MO3 with transition metals in octahedral geometry inside the glass network.
Resumo:
Crystalline lead-pyrophosphate precursor was prepared in aqueous solution from lead nitrate and phosphoric acid and characterized by X-ray diffraction, thermogravimetry and Raman scattering. This crystalline lead-phosphate was then used to prepare glass samples in the binary system Pb(2)P(2)O(7)-WO(3). Dependence of WO(3) content on thermal, structural and optical properties were investigated by thermal analysis (DSC), Raman spectroscopy, UV-visible and near-infrared absorption and M-Line technique to access refractive index values. Incorporation of WO(3) in the lead-pyrophosphate matrix enhances the glass transition temperature and thermal stability against devitrification, favors formation of P-O-W bonds and WO(6) clusters. In addition, optical properties are strongly modified with a redshift of the optical bandgap with WO(3) incorporation as well as an increase of the refractive index from 1.89 to 2.05 in the visible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electrical resistivity measurements and scanning electron microscopy was used to study the dissolution of silver on Cu-Ag and Cu-Al-Ag alloys. The results seem to indicate that the dissolution temperature is affected by the addition of aluminium.
Resumo:
A tungsten carbide coating on the integrated platform of a transversely heated graphite atomizer (THGA((R))) used together with Pd(NO3)(2) + Mg(NO3)(2) as modifier is proposed for the direct determination of lead in vinegar by graphite furnace atomic absorption spectrometry. The optimized heating program (temperature, ramp time, hold time) of atomizer involved drying stage (110 degrees C, 5 s, 30 s; 130 degrees C, 5 s, 30 s), pyrolysis stage (1000 degrees C, 15 s, 30 s), atomization stage (1800 degrees C, 0 s, 5 s) and clean-out stage (2450 degrees C, I s, 3 s). For 10 mu L of vinegar delivered into the atomizer and calibration using working standard solutions (2.5-20.0 mu g L-1 Pb) in 0.2% (v/v) HNO3, analytical curve with good linear correlation (r = 0.9992) was established. The characteristic mass was 40 pg Pb and the lifetime of the tube was around 730 firings. The limit of detection (LOD) was 0.4 mu g L-1 and the relative standard deviations (n = 12) were typically <8% for a sample containing 25 pg L-1 Pb. Accuracy of the proposed method was checked after direct analysis of 23 vinegar samples. A paired t-test showed that results were in agreement at 95% confidence level with those obtained for acid-digested vinegar samples. The Pb levels varied from 2.8 to 32.4 pg L-1. Accuracy was also checked by means of addition/recovery tests and recovered values varied from 90% to 110%. Additionally, two certified reference materials were analyzed and results were in agreement with certified values at a 95% confidence level. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The thermal behavior of the Cu-10 mass%Al and Cu-10 mass% Al-4 mass%Ag alloys was studied using classical differential thermal analysis (DTA), optical microscopy (OM) and X-ray diffractometry (XRD). The DTA curves were obtained for annealed and quenched samples. The results indicated that the presence of silver introduces new thermal events, associated to the formation of a silver-rich phase, to the shift of the equilibrium concentration to higher A1 contents and to the decomposition of the silver-rich phase in the same temperature range of the beta(1) phase decomposition.
Resumo:
The effect of the addition of Cr and Nb on the microstructure and the electrochemical corrosion of the weldable, high-strength and stress corrosion cracking (SCC) resistant Al-5%Zn-1.67%Mg-0.23%Cu alloy (H) has been studied. Combined additions of the alloying elements, J (with Nb), L (with Cr) and O (with Cr and Nb) and different heat treatments, ST (cold-rolled), A (annealed), F (quenched), B (quenched and aged) and C (quenched in two steps and aged), to obtain different microstructures and hardness have been performed. To correlate the electrochemical corrosion with the microstructure of the specimens, corrosion potential (E(cor)) measurements in different chloride solutions were performed and optical microscopy, SEM, TEM and EDX were applied. In chloride solutions containing dissolved O-2 or H2O2, the present alloys were polarized up to the pitting attack. It was shown that the E(cor) measurements were very sensitive to the alloy composition and heat treatment, increasing in the order H < J < L < O < Al (for a given heat treatment) and F < A approximate to ST < B < C (for a given alloy). The MgZn2 precipitates of the annealed (A) and cold-rolled (ST) specimens were dissolved in chloride solutions containing oxidizing agents and pitting attack was shown to develop in the cavities where the precipitates were present. In the specimens B and C, the compositions of the precipitate free zones was found to be equal to that of the matrix solid solution and preferential intergranular attack was not evident, this being in agreement with their SCC resistance. The addition of Cr and Nb increased the pitting corrosion resistance. The effects of Cr and Nb were additive, that of Cr being predominant, either, in the E(cor) shift or in the increase in the pitting corrosion resistance.
Resumo:
Statement of problem. The success of metal-ceramic restorations is influenced by the compatibility between base metal alloys and porcelains. Although porcelain manufacturers recommend their own metal systems as the most compatible for fabricating metal-ceramic prostheses, a number of alloys have been used.Purpose. This study evaluated the shear bond strength between a porcelain system and 4 alternative alloys.Material and methods. Two Ni-Cr alloys: 4 ALL and Wiron 99, and 2 Co-Cr alloys: IPS d.SIGN 20 and Argeloy NP were selected for this study. The porcelain (IPS d.Sign porcelain system) portion of the cylindrical inetal-ceramic specimens was 4 mm thick and 4 mm high; the metal portion was machined to 4 x 4 mm, with a base that was 5 nun thick and 1 mm high. Forty-four specimens were prepared (n=11). Ten specimens from each group were subjected to a shear load oil a universal testing machine using a 1 min/min crosshead speed. One specimen from each group was observed with a scanning electron microscope. Stress at failure (MPa) was determined. The data were analyzed with a 1-way analysis of variance (alpha=.05).Results. The groups, all including IPS d.Sign porcelain, presented the following mean bond strengths (+/-SD) in MPa: 4 ALL, 54.0 +/- 20.0; Wiron, 63.0 +/- 13.5; IPS d.SIGN 20, 71.7 +/- 19.2; Argeloy NP, 55.2 +/- 13.5. No significant differences were found among the shear bond strength values for the metal-ceramic specimens tested.Conclusion. None of the base metal alloys studied demonstrated superior bond strength to the porcelain tested.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)