897 resultados para Transformation-based semi-parametric estimators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de esta Tesis ha sido la consecución de simulaciones en tiempo real de vehículos industriales modelizados como sistemas multicuerpo complejos formados por sólidos rígidos. Para el desarrollo de un programa de simulación deben considerarse cuatro aspectos fundamentales: la modelización del sistema multicuerpo (tipos de coordenadas, pares ideales o impuestos mediante fuerzas), la formulación a utilizar para plantear las ecuaciones diferenciales del movimiento (coordenadas dependientes o independientes, métodos globales o topológicos, forma de imponer las ecuaciones de restricción), el método de integración numérica para resolver estas ecuaciones en el tiempo (integradores explícitos o implícitos) y finalmente los detalles de la implementación realizada (lenguaje de programación, librerías matemáticas, técnicas de paralelización). Estas cuatro etapas están interrelacionadas entre sí y todas han formado parte de este trabajo. Desde la generación de modelos de una furgoneta y de camión con semirremolque, el uso de tres formulaciones dinámicas diferentes, la integración de las ecuaciones diferenciales del movimiento mediante métodos explícitos e implícitos, hasta el uso de funciones BLAS, de técnicas de matrices sparse y la introducción de paralelización para utilizar los distintos núcleos del procesador. El trabajo presentado en esta Tesis ha sido organizado en 8 capítulos, dedicándose el primero de ellos a la Introducción. En el Capítulo 2 se presentan dos formulaciones semirrecursivas diferentes, de las cuales la primera está basada en una doble transformación de velocidades, obteniéndose las ecuaciones diferenciales del movimiento en función de las aceleraciones relativas independientes. La integración numérica de estas ecuaciones se ha realizado con el método de Runge-Kutta explícito de cuarto orden. La segunda formulación está basada en coordenadas relativas dependientes, imponiendo las restricciones por medio de penalizadores en posición y corrigiendo las velocidades y aceleraciones mediante métodos de proyección. En este segundo caso la integración de las ecuaciones del movimiento se ha llevado a cabo mediante el integrador implícito HHT (Hilber, Hughes and Taylor), perteneciente a la familia de integradores estructurales de Newmark. En el Capítulo 3 se introduce la tercera formulación utilizada en esta Tesis. En este caso las uniones entre los sólidos del sistema se ha realizado mediante uniones flexibles, lo que obliga a imponer los pares por medio de fuerzas. Este tipo de uniones impide trabajar con coordenadas relativas, por lo que la posición del sistema y el planteamiento de las ecuaciones del movimiento se ha realizado utilizando coordenadas Cartesianas y parámetros de Euler. En esta formulación global se introducen las restricciones mediante fuerzas (con un planteamiento similar al de los penalizadores) y la estabilización del proceso de integración numérica se realiza también mediante proyecciones de velocidades y aceleraciones. En el Capítulo 4 se presenta una revisión de las principales herramientas y estrategias utilizadas para aumentar la eficiencia de las implementaciones de los distintos algoritmos. En primer lugar se incluye una serie de consideraciones básicas para aumentar la eficiencia numérica de las implementaciones. A continuación se mencionan las principales características de los analizadores de códigos utilizados y también las librerías matemáticas utilizadas para resolver los problemas de álgebra lineal tanto con matrices densas como sparse. Por último se desarrolla con un cierto detalle el tema de la paralelización en los actuales procesadores de varios núcleos, describiendo para ello el patrón empleado y las características más importantes de las dos herramientas propuestas, OpenMP y las TBB de Intel. Hay que señalar que las características de los sistemas multicuerpo problemas de pequeño tamaño, frecuente uso de la recursividad, y repetición intensiva en el tiempo de los cálculos con fuerte dependencia de los resultados anteriores dificultan extraordinariamente el uso de técnicas de paralelización frente a otras áreas de la mecánica computacional, tales como por ejemplo el cálculo por elementos finitos. Basándose en los conceptos mencionados en el Capítulo 4, el Capítulo 5 está dividido en tres secciones, una para cada formulación propuesta en esta Tesis. En cada una de estas secciones se describen los detalles de cómo se han realizado las distintas implementaciones propuestas para cada algoritmo y qué herramientas se han utilizado para ello. En la primera sección se muestra el uso de librerías numéricas para matrices densas y sparse en la formulación topológica semirrecursiva basada en la doble transformación de velocidades. En la segunda se describe la utilización de paralelización mediante OpenMP y TBB en la formulación semirrecursiva con penalizadores y proyecciones. Por último, se describe el uso de técnicas de matrices sparse y paralelización en la formulación global con uniones flexibles y parámetros de Euler. El Capítulo 6 describe los resultados alcanzados mediante las formulaciones e implementaciones descritas previamente. Este capítulo comienza con una descripción de la modelización y topología de los dos vehículos estudiados. El primer modelo es un vehículo de dos ejes del tipo chasis-cabina o furgoneta, perteneciente a la gama de vehículos de carga medianos. El segundo es un vehículo de cinco ejes que responde al modelo de un camión o cabina con semirremolque, perteneciente a la categoría de vehículos industriales pesados. En este capítulo además se realiza un estudio comparativo entre las simulaciones de estos vehículos con cada una de las formulaciones utilizadas y se presentan de modo cuantitativo los efectos de las mejoras alcanzadas con las distintas estrategias propuestas en esta Tesis. Con objeto de extraer conclusiones más fácilmente y para evaluar de un modo más objetivo las mejoras introducidas en la Tesis, todos los resultados de este capítulo se han obtenido con el mismo computador, que era el top de la gama Intel Xeon en 2007, pero que hoy día está ya algo obsoleto. Por último los Capítulos 7 y 8 están dedicados a las conclusiones finales y las futuras líneas de investigación que pueden derivar del trabajo realizado en esta Tesis. Los objetivos de realizar simulaciones en tiempo real de vehículos industriales de gran complejidad han sido alcanzados con varias de las formulaciones e implementaciones desarrolladas. ABSTRACT The objective of this Dissertation has been the achievement of real time simulations of industrial vehicles modeled as complex multibody systems made up by rigid bodies. For the development of a simulation program, four main aspects must be considered: the modeling of the multibody system (types of coordinates, ideal joints or imposed by means of forces), the formulation to be used to set the differential equations of motion (dependent or independent coordinates, global or topological methods, ways to impose constraints equations), the method of numerical integration to solve these equations in time (explicit or implicit integrators) and the details of the implementation carried out (programming language, mathematical libraries, parallelization techniques). These four stages are interrelated and all of them are part of this work. They involve the generation of models for a van and a semitrailer truck, the use of three different dynamic formulations, the integration of differential equations of motion through explicit and implicit methods, the use of BLAS functions and sparse matrix techniques, and the introduction of parallelization to use the different processor cores. The work presented in this Dissertation has been structured in eight chapters, the first of them being the Introduction. In Chapter 2, two different semi-recursive formulations are shown, of which the first one is based on a double velocity transformation, thus getting the differential equations of motion as a function of the independent relative accelerations. The numerical integration of these equations has been made with the Runge-Kutta explicit method of fourth order. The second formulation is based on dependent relative coordinates, imposing the constraints by means of position penalty coefficients and correcting the velocities and accelerations by projection methods. In this second case, the integration of the motion equations has been carried out by means of the HHT implicit integrator (Hilber, Hughes and Taylor), which belongs to the Newmark structural integrators family. In Chapter 3, the third formulation used in this Dissertation is presented. In this case, the joints between the bodies of the system have been considered as flexible joints, with forces used to impose the joint conditions. This kind of union hinders to work with relative coordinates, so the position of the system bodies and the setting of the equations of motion have been carried out using Cartesian coordinates and Euler parameters. In this global formulation, constraints are introduced through forces (with a similar approach to the penalty coefficients) are presented. The stabilization of the numerical integration is carried out also by velocity and accelerations projections. In Chapter 4, a revision of the main computer tools and strategies used to increase the efficiency of the implementations of the algorithms is presented. First of all, some basic considerations to increase the numerical efficiency of the implementations are included. Then the main characteristics of the code’ analyzers used and also the mathematical libraries used to solve linear algebra problems (both with dense and sparse matrices) are mentioned. Finally, the topic of parallelization in current multicore processors is developed thoroughly. For that, the pattern used and the most important characteristics of the tools proposed, OpenMP and Intel TBB, are described. It needs to be highlighted that the characteristics of multibody systems small size problems, frequent recursion use and intensive repetition along the time of the calculation with high dependencies of the previous results complicate extraordinarily the use of parallelization techniques against other computational mechanics areas, as the finite elements computation. Based on the concepts mentioned in Chapter 4, Chapter 5 is divided into three sections, one for each formulation proposed in this Dissertation. In each one of these sections, the details of how these different proposed implementations have been made for each algorithm and which tools have been used are described. In the first section, it is shown the use of numerical libraries for dense and sparse matrices in the semirecursive topological formulation based in the double velocity transformation. In the second one, the use of parallelization by means OpenMP and TBB is depicted in the semi-recursive formulation with penalization and projections. Lastly, the use of sparse matrices and parallelization techniques is described in the global formulation with flexible joints and Euler parameters. Chapter 6 depicts the achieved results through the formulations and implementations previously described. This chapter starts with a description of the modeling and topology of the two vehicles studied. The first model is a two-axle chassis-cabin or van like vehicle, which belongs to the range of medium charge vehicles. The second one is a five-axle vehicle belonging to the truck or cabin semi-trailer model, belonging to the heavy industrial vehicles category. In this chapter, a comparative study is done between the simulations of these vehicles with each one of the formulations used and the improvements achieved are presented in a quantitative way with the different strategies proposed in this Dissertation. With the aim of deducing the conclusions more easily and to evaluate in a more objective way the improvements introduced in the Dissertation, all the results of this chapter have been obtained with the same computer, which was the top one among the Intel Xeon range in 2007, but which is rather obsolete today. Finally, Chapters 7 and 8 are dedicated to the final conclusions and the future research projects that can be derived from the work presented in this Dissertation. The objectives of doing real time simulations in high complex industrial vehicles have been achieved with the formulations and implementations developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many practical simulation tasks demand procedures to draw samples efficiently from multivariate truncated Gaussian distributions. In this work, we introduce a novel rejection approach, based on the Box-Muller transformation, to generate samples from a truncated bivariate Gaussian density with an arbitrary support. Furthermore, for an important class of support regions the new method allows us to achieve exact sampling, thus becoming the most efficient approach possible. RESUMEN. Método específico para generar muestras de manera eficiente de Gaussianas bidimensionales truncadas con cualquier zona de truncamiento basado en la transformación de Box-Muller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas técnicos son cada vez más complejos, incorporan funciones más avanzadas, están más integrados con otros sistemas y trabajan en entornos menos controlados. Todo esto supone unas condiciones más exigentes y con mayor incertidumbre para los sistemas de control, a los que además se demanda un comportamiento más autónomo y fiable. La adaptabilidad de manera autónoma es un reto para tecnologías de control actualmente. El proyecto de investigación ASys propone abordarlo trasladando la responsabilidad de la capacidad de adaptación del sistema de los ingenieros en tiempo de diseño al propio sistema en operación. Esta tesis pretende avanzar en la formulación y materialización técnica de los principios de ASys de cognición y auto-consciencia basadas en modelos y autogestión de los sistemas en tiempo de operación para una autonomía robusta. Para ello el trabajo se ha centrado en la capacidad de auto-conciencia, inspirada en los sistemas biológicos, y se ha explorado la posibilidad de integrarla en la arquitectura de los sistemas de control. Además de la auto-consciencia, se han explorado otros temas relevantes: modelado funcional, modelado de software, tecnología de los patrones, tecnología de componentes, tolerancia a fallos. Se ha analizado el estado de la técnica en los ámbitos pertinentes para las cuestiones de la auto-consciencia y la adaptabilidad en sistemas técnicos: arquitecturas cognitivas, control tolerante a fallos, y arquitecturas software dinámicas y computación autonómica. El marco teórico de ASys existente de sistemas autónomos cognitivos ha sido adaptado para servir de base para este análisis de autoconsciencia y adaptación y para dar sustento conceptual al posterior desarrollo de la solución. La tesis propone una solución general de diseño para la construcción de sistemas autónomos auto-conscientes. La idea central es la integración de un meta-controlador en la arquitectura de control del sistema autónomo, capaz de percibir la estado funcional del sistema de control y, si es necesario, reconfigurarlo en tiempo de operación. Esta solución de metacontrol se ha formalizado en cuatro patrones de diseño: i) el Patrón Metacontrol, que define la integración de un subsistema de metacontrol, responsable de controlar al propio sistema de control a través de la interfaz proporcionada por su plataforma de componentes, ii) el patrón Bucle de Control Epistémico, que define un bucle de control cognitivo basado en el modelos y que se puede aplicar al diseño del metacontrol, iii) el patrón de Reflexión basada en Modelo Profundo propone una solución para construir el modelo ejecutable utilizado por el meta-controlador mediante una transformación de modelo a modelo a partir del modelo de ingeniería del sistema, y, finalmente, iv) el Patrón Metacontrol Funcional, que estructura el meta-controlador en dos bucles, uno para el control de la configuración de los componentes del sistema de control, y otro sobre éste, controlando las funciones que realiza dicha configuración de componentes; de esta manera las consideraciones funcionales y estructurales se desacoplan. La Arquitectura OM y el metamodelo TOMASys son las piezas centrales del marco arquitectónico desarrollado para materializar la solución compuesta de los patrones anteriores. El metamodelo TOMASys ha sido desarrollado para la representación de la estructura y su relación con los requisitos funcionales de cualquier sistema autónomo. La Arquitectura OM es un patrón de referencia para la construcción de una metacontrolador integrando los patrones de diseño propuestos. Este meta-controlador se puede integrar en la arquitectura de cualquier sistema control basado en componentes. El elemento clave de su funcionamiento es un modelo TOMASys del sistema decontrol, que el meta-controlador usa para monitorizarlo y calcular las acciones de reconfiguración necesarias para adaptarlo a las circunstancias en cada momento. Un proceso de ingeniería, complementado con otros recursos, ha sido elaborado para guiar la aplicación del marco arquitectónico OM. Dicho Proceso de Ingeniería OM define la metodología a seguir para construir el subsistema de metacontrol para un sistema autónomo a partir del modelo funcional del mismo. La librería OMJava proporciona una implementación del meta-controlador OM que se puede integrar en el control de cualquier sistema autónomo, independientemente del dominio de la aplicación o de su tecnología de implementación. Para concluir, la solución completa ha sido validada con el desarrollo de un robot móvil autónomo que incorpora un meta-controlador con la Arquitectura OM. Las propiedades de auto-consciencia y adaptación proporcionadas por el meta-controlador han sido validadas en diferentes escenarios de operación del robot, en los que el sistema era capaz de sobreponerse a fallos en el sistema de control mediante reconfiguraciones orquestadas por el metacontrolador. ABSTRACT Technical systems are becoming more complex, they incorporate more advanced functionalities, they are more integrated with other systems and they are deployed in less controlled environments. All this supposes a more demanding and uncertain scenario for control systems, which are also required to be more autonomous and dependable. Autonomous adaptivity is a current challenge for extant control technologies. The ASys research project proposes to address it by moving the responsibility for adaptivity from the engineers at design time to the system at run-time. This thesis has intended to advance in the formulation and technical reification of ASys principles of model-based self-cognition and having systems self-handle at runtime for robust autonomy. For that it has focused on the biologically inspired capability of self-awareness, and explored the possibilities to embed it into the very architecture of control systems. Besides self-awareness, other themes related to the envisioned solution have been explored: functional modeling, software modeling, patterns technology, components technology, fault tolerance. The state of the art in fields relevant for the issues of self-awareness and adaptivity has been analysed: cognitive architectures, fault-tolerant control, and software architectural reflection and autonomic computing. The extant and evolving ASys Theoretical Framework for cognitive autonomous systems has been adapted to provide a basement for this selfhood-centred analysis and to conceptually support the subsequent development of our solution. The thesis proposes a general design solution for building self-aware autonomous systems. Its central idea is the integration of a metacontroller in the control architecture of the autonomous system, capable of perceiving the functional state of the control system and reconfiguring it if necessary at run-time. This metacontrol solution has been formalised into four design patterns: i) the Metacontrol Pattern, which defines the integration of a metacontrol subsystem, controlling the domain control system through an interface provided by its implementation component platform, ii) the Epistemic Control Loop pattern, which defines a modelbased cognitive control loop that can be applied to the design of such a metacontroller, iii) the Deep Model Reflection pattern proposes a solution to produce the online executable model used by the metacontroller by model-to-model transformation from the engineering model, and, finally, iv) the Functional Metacontrol pattern, which proposes to structure the metacontroller in two loops, one for controlling the configuration of components of the controller, and another one on top of the former, controlling the functions being realised by that configuration; this way the functional and structural concerns become decoupled. The OM Architecture and the TOMASys metamodel are the core pieces of the architectural framework developed to reify this patterned solution. The TOMASys metamodel has been developed for representing the structure and its relation to the functional requirements of any autonomous system. The OM architecture is a blueprint for building a metacontroller according to the patterns. This metacontroller can be integrated on top of any component-based control architecture. At the core of its operation lies a TOMASys model of the control system. An engineering process and accompanying assets have been constructed to complete and exploit the architectural framework. The OM Engineering Process defines the process to follow to develop the metacontrol subsystem from the functional model of the controller of the autonomous system. The OMJava library provides a domain and application-independent implementation of an OM Metacontroller than can be used in the implementation phase of OMEP. Finally, the complete solution has been validated in the development of an autonomous mobile robot that incorporates an OM metacontroller. The functional selfawareness and adaptivity properties achieved thanks to the metacontrol system have been validated in different scenarios. In these scenarios the robot was able to overcome failures in the control system thanks to reconfigurations performed by the metacontroller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software Product Line Engineering has significant advantages in family-based software development. The common and variable structure for all products of a family is defined through a Product-Line Architecture (PLA) that consists of a common set of reusable components and connectors which can be configured to build the different products. The design of PLA requires solutions for capturing such configuration (variability). The Flexible-PLA Model is a solution that supports the specification of external variability of the PLA configuration, as well as internal variability of components. However, a complete support for product-line development requires translating architecture specifications into code. This complex task needs automation to avoid human error. Since Model-Driven Development allows automatic code generation from models, this paper presents a solution to automatically generate AspectJ code from Flexible-PLA models previously configured to derive specific products. This solution is supported by a modeling framework and validated in a software factory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many arid or semi-arid Mediterranean regions, agriculture is dependent on irrigation. When hydrological drought phenomena occur, farmers suffer from water shortages, incurring important economic losses. Yet, there is not agricultural insurance available for lack of irrigation water. This work attempts to evaluate hydrological drought risk and its economic impact on crop production in order to provide the basis for the design of drought insurance for irrigated arable crops. With this objective a model that relates water availability with expected yields is developed. Crop water requirements are calculated from evapotranspiration, effective rainfall and soil water balance. FAO?s methodology and AquaCrop software have been used to establish the relationship between water allocations and crop yields. The analysis is applied to the irrigation zone ?Riegos de Bardenas?, which is located in the Ebro river basin, northeast Spain, to the main arable crops in the area. Results show the fair premiums of different hydrological drought insurance products. Whole-farm insurance or irrigation district insurance should be preferable to crop specific insurance due to the drought management strategies used by farmers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HiPER reactor design is exploring different reaction chambers. In this study, we tackle the neutronicsand activation studies of a preliminary reaction chamber based in the following technologies: unpro-tected dry wall for the First Wall, self-cooled lead lithium blanket, and independent low activation steelVacuum Vessel. The most critical free parameter in this stage is the blanket thickness, as a function ofthe6Li enrichment. After a parametric study, we select for study both a ?thin? and ?thick? blanket, with?high? and ?low?6Li enrichment respectively, to reach a TBR = 1.1. To help to make a choice, we com-pute, for both blanket options, in addition to the TBR, the energy amplification factor, the tritium partialpressure, the203Hg and210Po total activity in the LiPb loop, and the Vacuum Vessel thickness requiredto guarantee the reweldability during its lifetime. The thin blanket shows a superior performance in thesafety related issues and structural viability, but it operates at higher6Li enrichment. It is selected forfurther improvements. The Vacuum Vessel shows to be unviable in both cases, with the thickness varyingbetween 39 and 52 cm. Further chamber modifications, such as the introduction of a neutron reflector,are required to exploit the benefits of the thin blanket with a reasonable Vacuum Vessel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/ webcite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustaining irrigated agriculture to meet food production needs while maintaining aquatic ecosystems is at the heart of many policy debates in various parts of the world, especially in arid and semi-arid areas. Researchers and practitioners are increasingly calling for integrated approaches, and policy-makers are progressively supporting the inclusion of ecological and social aspects in water management programs. This paper contributes to this policy debate by providing an integrated economic-hydrologic modeling framework that captures the socio-economic and environmental effects of various policy initiatives and climate variability. This modeling integration includes a risk-based economic optimization model and a hydrologic water management simulation model that have been specified for the Middle Guadiana basin, a vulnerable drought-prone agro-ecological area with highly regulated river systems in southwest Spain. Namely, two key water policy interventions were investigated: the implementation of minimum environmental flows (supported by the European Water Framework Directive, EU WFD), and a reduction in the legal amount of water delivered for irrigation (planned measure included in the new Guadiana River Basin Management Plan, GRBMP, still under discussion). Results indicate that current patterns of excessive water use for irrigation in the basin may put environmental flow demands at risk, jeopardizing the WFD s goal of restoring the ?good ecological status? of water bodies by 2015. Conflicts between environmental and agricultural water uses will be stressed during prolonged dry episodes, and particularly in summer low-flow periods, when there is an important increase of crop irrigation water requirements. Securing minimum stream flows would entail a substantial reduction in irrigation water use for rice cultivation, which might affect the profitability and economic viability of small rice-growing farms located upstream in the river. The new GRBMP could contribute to balance competing water demands in the basin and to increase economic water productivity, but might not be sufficient to ensure the provision of environmental flows as required by the WFD. A thoroughly revision of the basin s water use concession system for irrigation seems to be needed in order to bring the GRBMP in line with the WFD objectives. Furthermore, the study illustrates that social, economic, institutional, and technological factors, in addition to bio-physical conditions, are important issues to be considered for designing and developing water management strategies. The research initiative presented in this paper demonstrates that hydro-economic models can explicitly integrate all these issues, constituting a valuable tool that could assist policy makers for implementing sustainable irrigation policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyse a class of estimators of the generalized diffusion coefficient for fractional Brownian motion Bt of known Hurst index H, based on weighted functionals of the single time square displacement. We show that for a certain choice of the weight function these functionals possess an ergodic property and thus provide the true, ensemble-averaged, generalized diffusion coefficient to any necessary precision from a single trajectory data, but at expense of a progressively higher experimental resolution. Convergence is fastest around H ? 0.30, a value in the subdiffusive regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a mathematical method for producing hard-chine ship hulls based on a set of numerical parameters that are directly related to the geometric features of the hull and uniquely define a hull form for this type of ship. The term planing hull is used generically to describe the majority of hard-chine boats being built today. This article is focused on unstepped, single-chine hulls. B-spline curves and surfaces were combined with constraints on the significant ship curves to produce the final hull design. The hard-chine hull geometry was modeled by decomposing the surface geometry into boundary curves, which were defined by design constraints or parameters. In planing hull design, these control curves are the center, chine, and sheer lines as well as their geometric features including position, slope, and, in the case of the chine, enclosed area and centroid. These geometric parameters have physical, hydrodynamic, and stability implications from the design point of view. The proposed method uses two-dimensional orthogonal projections of the control curves and then produces three-dimensional (3-D) definitions using B-spline fitting of the 3-D data points. The fitting considers maximum deviation from the curve to the data points and is based on an original selection of the parameterization. A net of B-spline curves (stations) is then created to match the previously defined 3-D boundaries. A final set of lofting surfaces of the previous B-spline curves produces the hull surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta tesis se aborda el problema de la modelización, análisis y optimización de pórticos metálicos planos de edificación frente a los estados límites último y de servicio. El objetivo general es presentar una técnica secuencial ordenada de optimización discreta para obtener el coste mínimo de pórticos metálicos planos de edificación, teniendo en cuenta las especificaciones del EC-3, incorporando las uniones semirrígidas y elementos no prismáticos en el proceso de diseño. Asimismo se persigue valorar su grado de influencia sobre el diseño final. El horizonte es extraer conclusiones prácticas que puedan ser de utilidad y aplicación simple para el proyecto de estructuras metálicas. La cantidad de publicaciones técnicas y científicas sobre la respuesta estructural de entramados metálicos es inmensa; por ello se ha hecho un esfuerzo intenso en recopilar el estado actual del conocimiento, sobre las líneas y necesidades actuales de investigación. Se ha recabado información sobre los métodos modernos de cálculo y diseño, sobre los factores que influyen sobre la respuesta estructural, sobre técnicas de modelización y de optimización, al amparo de las indicaciones que algunas normativas actuales ofrecen sobre el tema. En esta tesis se ha desarrollado un procedimiento de modelización apoyado en el método de los elementos finitos implementado en el entorno MatLab; se han incluido aspectos claves tales como el comportamiento de segundo orden, la comprobación ante inestabilidad y la búsqueda del óptimo del coste de la estructura frente a estados límites, teniendo en cuenta las especificaciones del EC-3. También se ha modelizado la flexibilidad de las uniones y se ha analizado su influencia en la respuesta de la estructura y en el peso y coste final de la misma. Se han ejecutado algunos ejemplos de aplicación y se ha contrastado la validez del modelo con resultados de algunas estructuras ya analizadas en referencias técnicas conocidas. Se han extraído conclusiones sobre el proceso de modelización y de análisis, sobre la repercusión de la flexibilidad de las uniones en la respuesta de la estructura. El propósito es extraer conclusiones útiles para la etapa de proyecto. Una de las principales aportaciones del trabajo en su enfoque de optimización es la incorporación de una formulación de elementos no prismáticos con uniones semirrígidas en sus extremos. Se ha deducido una matriz de rigidez elástica para dichos elementos. Se ha comprobado su validez para abordar el análisis no lineal; para ello se han comparado los resultados con otros obtenidos tras aplicar otra matriz deducida analíticamente existente en la literatura y también mediante el software comercial SAP2000. Otra de las aportaciones de esta tesis es el desarrollo de un método de optimización del coste de pórticos metálicos planos de edificación en el que se tienen en cuenta aspectos tales como las imperfecciones, la posibilidad de incorporar elementos no prismáticos y la caracterización de las uniones semirrígidas, valorando la influencia de su flexibilidad sobre la respuesta de la estructura. Así, se han realizado estudios paramétricos para valorar la sensibilidad y estabilidad de las soluciones obtenidas, así como rangos de validez de las conclusiones obtenidas. This thesis deals with the problems of modelling, analysis and optimization of plane steel frames with regard to ultimate and serviceability limit states. The objective of this work is to present an organized sequential technique of discrete optimization for achieving the minimum cost of plane steel frames, taking into consideration the EC-3 specifications as well as including effects of the semi-rigid joints and non-prismatic elements in the design process. Likewise, an estimate of their influence on the final design is an aim of this work. The final objective is to draw practical conclusions which can be handful and easily applicable for a steel-structure project. An enormous amount of technical and scientific publications regarding steel frames is currently available, thus making the achievement of a comprehensive and updated knowledge a considerably hard task. In this work, a large variety of information has been gathered and classified, especially that related to current research lines and needs. Thus, the literature collected encompasses references related to state-of-the-art design methods, factors influencing the structural response, modelling and optimization techniques, as well as calculation and updated guidelines of some steel Design Codes about the subject. In this work a modelling procedure based on the finite element implemented within the MatLab programming environment has been performed. Several keys aspects have been included, such as second order behaviour, the safety assessment against structural instability and the search for an optimal cost considering the limit states according to EC-3 specifications. The flexibility of joints has been taken into account in the procedure hereby presented; its effects on the structural response, on the optimum weight and on the final cost have also been analysed. In order to confirm the validity and adequacy of this procedure, some application examples have been carried out. The results obtained were compared with those available from other authors. Several conclusions about the procedure that comprises modelling, analysis and design stages, as well as the effect of the flexibility of connections on the structural response have been drawn. The purpose is to point out some guidelines for the early stages of a project. One of the contributions of this thesis is an attempt for optimizing plane steel frames in which both non-prismatic beam-column-type elements and semi-rigid connections have been considered. Thus, an elastic stiffness matrix has been derived. Its validity has been tested through comparing its accuracy with other analytically-obtained matrices available in the literature, and with results obtained by the commercial software SAP2000. Another achievement of this work is the development of a method for cost optimization of plane steel building frames in which some relevant aspects have been taken in consideration. These encompass geometric imperfections, non-prismatic beam elements and the numerical characterization of semi-rigid connections, evaluating the effect of its flexibility on the structural response. Hence, some parametric analyses have been performed in order to assess the sensitivity, the stability of the outcomes and their range of applicability as well.