822 resultados para Time-Delayed Systems
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the a mission should be aborted due to mechanical or other failure. On-board cameras provide information that can be used in the determination of potential landing sites, which are continually updated and ranked to prevent injury and minimize damage. Pulse Coupled Neural Networks have been used for the detection of features in images that assist in the classification of vegetation and can be used to minimize damage to the aerial vehicle. However, a significant drawback in the use of PCNNs is that they are computationally expensive and have been more suited to off-line applications on conventional computing architectures. As heterogeneous computing architectures are becoming more common, an OpenCL implementation of a PCNN feature generator is presented and its performance is compared across OpenCL kernels designed for CPU, GPU and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images obtained during unmanned aerial vehicle trials to determine the plausibility for real-time feature detection.
Resumo:
This paper describes the theory and practice for a stable haptic teleoperation of a flying vehicle. It extends passivity-based control framework for haptic teleoperation of aerial vehicles in the longest intercontinental setting that presents great challenges. The practicality of the control architecture has been shown in maneuvering and obstacle-avoidance tasks over the internet with the presence of significant time-varying delays and packet losses. Experimental results are presented for teleoperation of a slave quadrotor in Australia from a master station in the Netherlands. The results show that the remote operator is able to safely maneuver the flying vehicle through a structure using haptic feedback of the state of the slave and the perceived obstacles.
Resumo:
This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.
Resumo:
Public transport travel time variability (PTTV) is essential for understanding deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyses the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and researching the transit systems.
Resumo:
Technological advances have led to an influx of affordable hardware that supports sensing, computation and communication. This hardware is increasingly deployed in public and private spaces, tracking and aggregating a wealth of real-time environmental data. Although these technologies are the focus of several research areas, there is a lack of research dealing with the problem of making these capabilities accessible to everyday users. This thesis represents a first step towards developing systems that will allow users to leverage the available infrastructure and create custom tailored solutions. It explores how this notion can be utilized in the context of energy monitoring to improve conventional approaches. The project adopted a user-centered design process to inform the development of a flexible system for real-time data stream composition and visualization. This system features an extensible architecture and defines a unified API for heterogeneous data streams. Rather than displaying the data in a predetermined fashion, it makes this information available as building blocks that can be combined and shared. It is based on the insight that individual users have diverse information needs and presentation preferences. Therefore, it allows users to compose rich information displays, incorporating personally relevant data from an extensive information ecosystem. The prototype was evaluated in an exploratory study to observe its natural use in a real-world setting, gathering empirical usage statistics and conducting semi-structured interviews. The results show that a high degree of customization does not warrant sustained usage. Other factors were identified, yielding recommendations for increasing the impact on energy consumption.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.
Resumo:
Objectives: To investigate the relationship between two assessments to quantify delayed onset muscle soreness [DOMS]: visual analog scale [VAS] and pressure pain threshold [PPT]. Methods: Thirty-one healthy young men [25.8 ± 5.5 years] performed 10 sets of six maximal eccentric contractions of the elbow flexors with their non-dominant arm. Before and one to four days after the exercise, muscle pain perceived upon palpation of the biceps brachii at three sites [5, 9 and 13 cm above the elbow crease] was assessed by VAS with a 100 mm line [0 = no pain, 100 = extremely painful], and PPT of the same sites was determined by an algometer. Changes in VAS and PPT over time were compared amongst three sites by a two-way repeated measures analysis of variance, and the relationship between VAS and PPT was analyzed using a Pearson product-moment correlation. Results: The VAS increased one to four days after exercise and peaked two days post-exercise, while the PPT decreased most one day post-exercise and remained below baseline for four days following exercise [p < 0.05]. No significant difference among the three sites was found for VAS [p = 0.62] or PPT [p = 0.45]. The magnitude of change in VAS did not significantly correlate with that of PPT [r = −0.20, p = 0.28]. Conclusion: These results suggest that the level of muscle pain is not region-specific, at least among the three sites investigated in the study, and VAS and PPT provide different information about DOMS, indicating that VAS and PPT represent different aspects of pain.
Resumo:
Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical real-time traffic condition at which the WNCSs marginally meet the real-time requirements, a cross-layer design (CLD) approach is presented in this paper to adaptively adjust the control period to achieve improved channel utilization while still maintaining effective and timely packet transmissions. The effectiveness of the proposed approach is demonstrated through simulation studies.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.
Resumo:
For a decade, embedded driving assistance systems were mainly dedicated to the management of short time events (lane departure, collision avoidance, collision mitigation). Recently a great number of projects have been focused on cooperative embedded devices in order to extend environment perception. Handling an extended perception range is important in order to provide enough information for both path planning and co-pilot algorithms which need to anticipate events. To carry out such applications, simulation has been widely used. Simulation is efficient to estimate the benefits of Cooperative Systems (CS) based on Inter-Vehicular Communications (IVC). This paper presents a new and modular architecture built with the SiVIC simulator and the RTMaps™ multi-sensors prototyping platform. A set of improvements, implemented in SiVIC, are introduced in order to take into account IVC modelling and vehicles’ control. These 2 aspects have been tuned with on-road measurements to improve the realism of the scenarios. The results obtained from a freeway emergency braking scenario are discussed.
Resumo:
The Chinese government should be commended for its open, concerted, and rapid response to the recent H7N9 influenza outbreak. However, the first known case was not reported until 48 days after disease onset.1 Although the difficulties in detecting the virus and the lack of suitable diagnostic methods have been the focus of discussion,2 systematic limitations that may have contributed to this delay have hardly been discussed. The detection speed of surveillance systems is limited by the highly structured nature of information flow and hierarchical organisation of these systems. Flu surveillance usually relies on notification to a central authority of laboratory confirmed cases or presentations to sentinel practices for flu-like illness. Each step in this pathway presents a bottleneck at which information and time can be lost; this limitation must be dealt with...
Resumo:
Distributed generation (DG) resources are commonly used in the electric systems to obtain minimum line losses, as one of the benefits of DG, in radial distribution systems. Studies have shown the importance of appropriate selection of location and size of DGs. This paper proposes an analytical method for solving optimal distributed generation placement (ODGP) problem to minimize line losses in radial distribution systems using loss sensitivity factor (LSF) based on bus-injection to branch-current (BIBC) matrix. The proposed method is formulated and tested on 12 and 34 bus radial distribution systems. The classical grid search algorithm based on successive load flows is employed to validate the results. The main advantages of the proposed method as compared with the other conventional methods are the robustness and no need to calculate and invert large admittance or Jacobian matrices. Therefore, the simulation time and the amount of computer memory, required for processing data especially for the large systems, decreases.
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
This paper discusses the idea and demonstrates an early prototype of a novel method of interacting with security surveillance footage using natural user interfaces in place of traditional mouse and keyboard interaction. Current surveillance monitoring stations and systems provide the user with a vast array of video feeds from multiple locations on a video wall, relying on the user’s ability to distinguish locations of the live feeds from experience or list based key-value pair of location and camera IDs. During an incident, this current method of interaction may cause the user to spend increased amounts time obtaining situational and location awareness, which is counter-productive. The system proposed in this paper demonstrates how a multi-touch screen and natural interaction can enable the surveillance monitoring station users to quickly identify the location of a security camera and efficiently respond to an incident.