774 resultados para Test–retest repeatability
Resumo:
Using excessively tilted fiber grating (Ex-TFG) inscribed in standard single mode fiber, we developed a novel label-free immunoassay for specific detection of porcine circovirus type 2 (PCV2), which is a minim animal virus. Staphylococcal protein A (SPA) was used to modify the silanized fiber surface thus forming a SPA layer, which would greatly enhance the proportion of anti-PCV2 monoclonal antibody (MAb) bioactivity, thus improving the effectiveness of specific adsorption and binding events between anti-PCV2 MAbs and PCV2 antigens. Immunoassay experiments were carried out by monitoring the resonance wavelength shift of the proposed sensor under different PCV2 titer levels. Anti-PCV2 MAbs were thoroughly dissociated from the SPA layer by treatment with urea, and recombined to the SPA layer on the sensor surface for repeated immunoassay of PCV2. The specificity of the immunosensor was inspected by detecting porcine reproductive and respiratory syndrome virus (PRRSV) first, and PCV2 subsequently. The results showed a limit of detection (LOD) for the PCV2 immunosensor of ~9.371TCID50/mL, for a saturation value of ~4.801×103TCID50/mL, with good repeatability and excellent specificity.
Resumo:
The purpose of this investigation was to develop and implement a general purpose VLSI (Very Large Scale Integration) Test Module based on a FPGA (Field Programmable Gate Array) system to verify the mechanical behavior and performance of MEM sensors, with associated corrective capabilities; and to make use of the evolving System-C, a new open-source HDL (Hardware Description Language), for the design of the FPGA functional units. System-C is becoming widely accepted as a platform for modeling, simulating and implementing systems consisting of both hardware and software components. In this investigation, a Dual-Axis Accelerometer (ADXL202E) and a Temperature Sensor (TMP03) were used for the test module verification. Results of the test module measurement were analyzed for repeatability and reliability, and then compared to the sensor datasheet. Further study ideas were identified based on the study and results analysis. ASIC (Application Specific Integrated Circuit) design concepts were also being pursued.
Resumo:
Elemental analysis can become an important piece of evidence to assist the solution of a case. The work presented in this dissertation aims to evaluate the evidential value of the elemental composition of three particular matrices: ink, paper and glass. In the first part of this study, the analytical performance of LIBS and LA-ICP-MS methods was evaluated for paper, writing inks and printing inks. A total of 350 ink specimens were examined including black and blue gel inks, ballpoint inks, inkjets and toners originating from several manufacturing sources and/or batches. The paper collection set consisted of over 200 paper specimens originating from 20 different paper sources produced by 10 different plants. Micro-homogeneity studies show smaller variation of elemental compositions within a single source (i.e., sheet, pen or cartridge) than the observed variation between different sources (i.e., brands, types, batches). Significant and detectable differences in the elemental profile of the inks and paper were observed between samples originating from different sources (discrimination of 87–100% of samples, depending on the sample set under investigation and the method applied). These results support the use of elemental analysis, using LA-ICP-MS and LIBS, for the examination of documents and provide additional discrimination to the currently used techniques in document examination. In the second part of this study, a direct comparison between four analytical methods (µ-XRF, solution-ICP-MS, LA-ICP-MS and LIBS) was conducted for glass analyses using interlaboratory studies. The data provided by 21 participants were used to assess the performance of the analytical methods in associating glass samples from the same source and differentiating different sources, as well as the use of different match criteria (confidence interval (±6s, ±5s, ±4s, ±3s, ±2s), modified confidence interval, t-test (sequential univariate, p=0.05 and p=0.01), t-test with Bonferroni correction (for multivariate comparisons), range overlap, and Hotelling's T2 tests. Error rates (Type 1 and Type 2) are reported for the use of each of these match criteria and depend on the heterogeneity of the glass sources, the repeatability between analytical measurements, and the number of elements that were measured. The study provided recommendations for analytical performance-based parameters for µ-XRF and LA-ICP-MS as well as the best performing match criteria for both analytical techniques, which can be applied now by forensic glass examiners.
Resumo:
Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow fluctuations on low-rise buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. The methodology was validated by comparing aerodynamic pressure data for building models obtained in the open-jet 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. Field measurements of pressures on Texas Tech University building and Silsoe building were also used for validation purposes. The tests in partial simulation are freed of integral length scale constraints, meaning that model length scales in such testing are only limited by blockage considerations. Thus the partial simulation methodology can be used to produce aerodynamic data for low-rise buildings by using large-scale models in wind tunnels and WOW-like facilities. This is a major advantage, because large-scale models allow for accurate modeling of architectural details, testing at higher Reynolds number, using greater spatial resolution of the pressure taps in high pressure zones, and assessing the performance of aerodynamic devices to reduce wind effects. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. Partial turbulence simulation was used in the WOW to determine the performance of discontinuous perforated parapets in mitigating roof pressures. The comparisons of pressures with and without parapets showed significant reductions in pressure coefficients in the zones with high suctions. This demonstrated the potential of such aerodynamic add-on devices to reduce uplift forces.
Resumo:
During the oil refining process a huge discard volume of water occurs, which carries the contaminants from the process. A class of contaminant compounds resulting from the petrochemical industry are the Polyaromatic Hydrocarbons (PAH's). To evaluate the biodegradation of Dibenzothiophene in refinery water a synthetic wastewater was prepared to be treated using activated sludge. For this, a 2 3 Composite Design (plus 3 central points and six axial points) was carried out. The planning had as independent variables (factors) the initial concentration of DBT, pH and time of biodegradation. Biodegradation of DBT was assayed following the parameters COD, pH, temperature, SS, VSS, FVS, SVI. Concerned to the chromatographic conditions, a methodology was validated in order to verify the presence of DBT and its metabolite, 2-HBF, in the final wastewater treated by activated sludge system using a liquid - liquid extraction coupled to HPLC / UV analysis. The parameters used for validation were DL, QL, linearity, recovery and repeatability. As for optimization, the results indicated that the studied methodology can be used in monitoring the DBT degradation and 2- HBF by activated sludge, as they showed excellent linearity values, coefficients of variation, so as satisfactory recovery percentage. COD reduction efficiency tests showed an average percentage of 64.4%. The increasing trend for the results for the TSS and VSS tests showed that the activated sludge was well tailored. The best operating conditions for the reduction of COD were observed when operated with median concentrations of DBT, a higher time to biodegradation, and pH in both the acidic range as the basic one. The biodegradability of the DBT was confirmed by determining the presence of HBF-2. The highest concentrations of HBF-2 were obtained in extreme concentrations of DBT and pH, and higher biodegradation times.
Resumo:
Background: Obstructive airway diseases (OADs) are among the leading causes of morbidity and mortality worldwide. Shortness of breath (SOB) is the main symptom associated with OADs. International guidelines from the Global Initiative for Chronic Lung Disease (GOLD) and the Global Initiative for Asthma (GINA) have recommended spirometry as an indispensable tool for the diagnosis of asthma and chronic obstructive pulmonary diseases (COPD), but spirometry is rarely used in family practice. Simple and reliable diagnostic tools are necessary for screening community patients with onset of OADs for timely management. Purpose: This thesis examined screening utility of the PiKo-6 forced expiratory volume in one second (pFEV₁) , in six second (pFEV₆), and the pRatio ( pFEV₁/pFEV₆) in SOB patients for OADs in community pharmacy settings. FEV₆ has recently been suggested an excellent surrogate for Forced Vital Capacity (FVC), which requires maximum exhalation of the lungs. Methods: Patients with SOB symptoms who were prescribed pulmonary inhalers, by their family physicians, were recruited via community pharmacies. Trained pharmacists collected two PiKo-6 tests to assess the repeatability of the PiKo-6 device. All patients performed laboratory spirometry ( FEV₁, FVC and FEV₁/FVC) to obtain physician diagnosis of their OADs. The results of the PiKo-6 spirometer and laboratory spirometer were compared. In addition, the PiKo-6 pRatio and laboratory FEV₁/FVC were assessed against physician diagnosed COPD. Results: Sixty three patients volunteered to perform the PiKo-6 spirometry. Of these, 52.4 % were men (age 53.9 ± 15.3 years; BMI 31.9 ± 7.40 kg/m2). Repeated testing with pFEV₁, pFEV6 and pRatio correlated significantly (within correlation, r = 0.835, p-Value≤ 0.05 ; 0.872, p- Value≤ 0.05; and 0.664, p-Value≤ 0.05). In addition, pFEV₁, pFEV6 and pRatio correlated significantly with FEV₁, FVC and FEV₁/FVC, respectively (between correlation = 0.630, p- Value≤ 0.05 ; 0.660, p-Value≤ 0.05 and 0.580, p-Value≤ 0.05). The cut-off value corresponding to the greatest sum of sensitivity and specificity of pRatio for physician-diagnosed COPD was <0.80, the sensitivity and specificity were 84 % and 50%, respectively. Conclusions The portable PiKo-6 correlates moderately well with the standard spirometry, when delivered by community pharmacists to patients with OADs. The PiKo-6 spirometer may play a role in screening patients suspected of having an OAD in community pharmacies that may benefit from early physician diagnosis and appropriate management.
Resumo:
This study aims to evaluate the uncertainty associated with measurements made by aneroid sphygmomanometer, neonatal electronic balance and electrocautery. Therefore, were performing repeatability tests on all devices for the subsequent execution of normality tests using Shapiro-Wilk; identification of influencing factors that affect the measurement result of each measurement; proposition of mathematical models to calculate the measurement uncertainty associated with measuring evaluated for all equipament and calibration for neonatal electronic balance; evaluation of the measurement uncertainty; and development of a computer program in Java language to systematize the calibration uncertainty of estimates and measurement uncertainty. It was proposed and carried out 23 factorial design for aneroid sphygmomanometer order to investigate the effect of temperature factors, patient and operator and another 32 planning for electrocautery, where it investigated the effects of temperature factors and output electrical power. The expanded uncertainty associated with the measurement of blood pressure significantly reduced the extent of the patient classification tracks. In turn, the expanded uncertainty associated with the mass measurement with neonatal balance indicated a variation of about 1% in the dosage of medication to neonates. Analysis of variance (ANOVA) and the Turkey test indicated significant and indirectly proportional effects of temperature factor in cutting power values and clotting indicated by electrocautery and no significant effect of factors investigated for aneroid sphygmomanometer.
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
A method of accurately controlling the position of a mobile robot using an external Large Volume Metrology (LVM) instrument is presented in this paper. Utilizing a LVM instrument such as the laser tracker in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real- Time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitization scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
Head motion during a Positron Emission Tomography (PET) brain scan can considerably degrade image quality. External motion-tracking devices have proven successful in minimizing this effect, but the associated time, maintenance, and workflow changes inhibit their widespread clinical use. List-mode PET acquisition allows for the retroactive analysis of coincidence events on any time scale throughout a scan, and therefore potentially offers a data-driven motion detection and characterization technique. An algorithm was developed to parse list-mode data, divide the full acquisition into short scan intervals, and calculate the line-of-response (LOR) midpoint average for each interval. These LOR midpoint averages, known as “radioactivity centroids,” were presumed to represent the center of the radioactivity distribution in the scanner, and it was thought that changes in this metric over time would correspond to intra-scan motion.
Several scans were taken of the 3D Hoffman brain phantom on a GE Discovery IQ PET/CT scanner to test the ability of the radioactivity to indicate intra-scan motion. Each scan incrementally surveyed motion in a different degree of freedom (2 translational and 2 rotational). The radioactivity centroids calculated from these scans correlated linearly to phantom positions/orientations. Centroid measurements over 1-second intervals performed on scans with ~1mCi of activity in the center of the field of view had standard deviations of 0.026 cm in the x- and y-dimensions and 0.020 cm in the z-dimension, which demonstrates high precision and repeatability in this metric. Radioactivity centroids are thus shown to successfully represent discrete motions on the submillimeter scale. It is also shown that while the radioactivity centroid can precisely indicate the amount of motion during an acquisition, it fails to distinguish what type of motion occurred.
Development and validation of a rapid, aldehyde dehydrogenase bright-based cord blood potency assay.
Resumo:
Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDH(br)]), along with viable CD45(+) or CD34(+) cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDH(br), CD34(+), and CFU content of 3908 segments over a 5-year period. ALDH(br) (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34(+) (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDH(br) content of the CBU. These results suggest that the ALDH(br) segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation.
Resumo:
Measurement of joint kinematics can provide knowledge to help improve joint prosthesis design, as well as identify joint motion patterns that may lead to joint degeneration or injury. More investigation into how the hip translates in live human subjects during high amplitude motions is needed. This work presents a design of a non-invasive method using the registration between images from conventional Magnetic Resonance Imaging (MRI) and open MRI to calculate three dimensional hip joint kinematics. The method was tested on a single healthy subject in three different poses. MRI protocols for the conventional gantry, high-resolution MRI and the open gantry, lowresolution MRI were developed. The scan time for the low-resolution protocol was just under 6 minutes. High-resolution meshes and low resolution contours were derived from segmentation of the high-resolution and low-resolution images, respectively. Low-resolution contours described the poses as scanned, whereas the meshes described the bones’ geometries. The meshes and contours were registered to each other, and joint kinematics were calculated. The segmentation and registration were performed for both cortical and sub-cortical bone surfaces. A repeatability study was performed by comparing the kinematic results derived from three users’ segmentations of the sub-cortical bone surfaces from a low-resolution scan. The root mean squared error of all registrations was below 1.92mm. The maximum range between segmenters in translation magnitude was 0.95mm, and the maximum deviation from the average of all orientations was 1.27◦. This work demonstrated that this method for non-invasive measurement of hip kinematics is promising for measuring high-range-of-motion hip motions in vivo.
Resumo:
Background: Lung clearance index (LCI) has good clinimetric properties and an acceptable feasibility profile as a surrogate endpoint in Cystic Fibrosis (CF). Although most studies to date have been in children, increasing numbers of adults with CF also have normal spirometry. Further study of LCI as an endpoint in CF adults is required. Therefore, the purpose of this study was to determine the clinimetric properties of LCI over the complete age range of people with CF. Methods: Clinically stable adults and children with CF and age matched healthy controls were recruited. Results: LCI and spirometry data for 110 CF subjects and 61 controls were collected at a stable visit. CF Questionnaire-Revised (CFQ-R) was completed by 80/110 CF subjects. Fifty-six CF subjects completed a second stable visit. The LCI CV% was 4.1% in adults and 6.3% in children with CF. The coefficient of repeatability of LCI was 1.2 in adults and 1.3 in children. In both adults and children, LCI (AUCROC=0.93 and 0.84) had greater combined sensitivity and specificity to discriminate between people with CF and controls compared to FEV1 (AUCROC=0.88 and 0.60) and FEF25-75 (AUCROC=0.87 and 0.68). LCI correlated significantly with the CFQ-R treatment burden in adults (r=-0.37; p<0.01) and children (r=-0.50; p<0.01). Washout tests were successful in 90% of CF subjects and were perceived as comfortable and easy to perform in both adults and children. Conclusions: These data support the use of LCI as a surrogate outcome measure in CF clinical trials in adults as well as children.
Resumo:
Die Wahrung der Reproduzierbarkeit empirisch erhobener Messdaten fordert eine konsequente Anwendung einer einheitlichen und standardisierten Methode. Am IFL des KIT wurde deshalb eine Prozessbeschreibung entworfen, die speziell für die Messung von Fördermitteln der Intralogistik angewandt werden kann. Neben der Vorbereitung und Durchführung der Messungen müssen die erhobenen Daten anschließend statistisch ausgewertet und interpretiert werden. Die Methode wird in diesem Beitrag vorgestellt und am Beispiel von Leistungs- und Energiemessungen angewandt.