807 resultados para TRIPLET EMITTER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visually impaired people have many difficulties when traveling because it is impossible for them to detect obstacles that stand in their way. Bats instead of using the sight to detect these obstacles use a method based on ultrasounds, as their sense of hearing is much more developed than that of sight. The aim of the project is to design and build a device based on the method used by the bats to detect obstacles and transmit this information to people with vision problems to improve their skills. The method involves sending ultrasonic waves and analyzing the echoes produced when these waves collide with an obstacle. The sent signals are pulses and the information needed is the time elapsed from we send a pulse to receive the echo produced. The speed of sound is fixed within the same environment, so measuring the time it takes the wave to make the return trip, we can easily know the distance where the object is located. To build the device we have to design the necessary circuits, fabricate printed circuit boards and mount the components. We also have to design a program that would work within the digital part, which will be responsible for performing distance calculations and generate the signals with the information for the user. The circuits are the emitter and the receiver. The transmitter circuit is responsible for generating the signals that we will use. We use an ultrasonic transmitter which operates at 40 kHz so the sent pulses have to be modulated with this frequency. For this we generate a 40 kHz wave with an astable multivibrator formed by NAND gates and a train of pulses with a timer. The signal is the product of these two signals. The circuit of the receiver is a signal conditioner which transforms the signals received by the ultrasonic receiver in square pulses. The received signals have a 40 kHz carrier, low voltage and very different shapes. In the signal conditioner we will amplify the voltage to appropriate levels, eliminate the component of 40 kHz and make the shape of the pulses square to use them digitally. To simplify the design and manufacturing process in the digital part of the device we will use the Arduino platform. The pulses sent and received echoes enter through input pins with suitable voltage levels. In the Arduino, our program will poll these two signals storing the time when a pulse occurs. These time values are analyzed and used to generate an audible signal with the user information. This information is stored in the frequency of the signal, so that the generated signal frequency varies depending on the distance at which the objects are. RESUMEN Las personas con discapacidad visual tienen muchas dificultades a la hora de desplazarse ya que les es imposible poder detectar los obstáculos que se interpongan en su camino. Los murciélagos en vez de usar la vista para detectar estos obstáculos utilizan un método basado en ultrasonidos, ya que su sentido del oído está mucho más desarrollado que el de la vista. El objetivo del proyecto es diseñar y construir un dispositivo basado en el método usado por los murciélagos para detectar obstáculos y que pueda ser usado por las personas con problemas en la vista para mejorar sus capacidades. El método utilizado consiste en enviar ondas de ultrasonidos y analizar el eco producido cuando estas ondas chocan con algún obstáculo. Las señales enviadas tendrán forma de pulsos y la información necesaria es el tiempo transcurrido entre que enviamos un pulso y recibimos el eco producido. La velocidad del sonido es fija dentro de un mismo entorno, por lo que midiendo el tiempo que tarda la onda en hacer el viaje de ida y vuelta podemos fácilmente conocer la distancia a la que se encuentra el objeto. Para construir el dispositivo tendremos que diseñar los circuitos necesarios, fabricar las placas de circuito impreso y montar los componentes. También deberemos diseñar el programa que funcionara dentro de la parte digital, que será el encargado de realizar los cálculos de la distancia y de generar las señales con la información para el usuario. Los circuitos diseñados corresponden uno al emisor y otro al receptor. El circuito emisor es el encargado de generar las señales que vamos a emitir. Vamos a usar un emisor de ultrasonidos que funciona a 40 kHz por lo que los pulsos que enviemos van a tener que estar modulados con esta frecuencia. Para ello generamos una onda de 40 kHz mediante un multivibrador aestable formado por puertas NAND y un tren de pulsos con un timer. La señal enviada es el producto de estas dos señales. El circuito de la parte del receptor es un acondicionador de señal que transforma las señales recibidas por el receptor de ultrasonidos en pulsos cuadrados. Las señales recibidas tienen una portadora de 40 kHz para poder usarlas con el receptor de ultrasonidos, bajo voltaje y formas muy diversas. En el acondicionador de señal amplificaremos el voltaje a niveles adecuados además de eliminar la componente de 40 kHz y conseguir pulsos cuadrados que podamos usar de forma digital. Para simplificar el proceso de diseño y fabricación en la parte digital del dispositivo usaremos la plataforma Arduino. Las señales correspondientes el envío de los pulsos y a la recepción de los ecos entraran por pines de entrada después de haber adaptado los niveles de voltaje. En el Arduino, nuestro programa sondeara estas dos señales almacenando el tiempo en el que se produce un pulso. Estos valores de tiempo se analizan y se usan para generar una señal audible con la información para el usuario. Esta información ira almacenada en la frecuencia de la señal, por lo que la señal generada variará su frecuencia en función de la distancia a la que se encuentren los objetos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method to obtain digital chaos synchronization between two systems is reported. It is based on the use of Optically Programmable Logic Cells as chaos generators. When these cells are feedbacked, periodic and chaotic behaviours are obtained. They depend on the ratio between internal and external delay times. Chaos synchronization is obtained if a common driving signal feeds both systems. A control to impose the same boundary conditions to both systems is added to the emitter. New techniques to analyse digital chaos are presented. The main application of these structures is to obtain secure communications in optical networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model for the steady-state response of anodic contactors that emit a plasma current Ii and collect electrons from a collisionless, unmagnetized plasma is presented. The use of a (kinetic) monoenergetic population for the attracted species, well known in passive probe theory, gives both accuracy and tractability to the theory. The monoenergetic population is proved to behave like an isentropic fluid with radial plus centripetal motion, allowing direct comparisons with ad hoc fluid models. Also, a modification of the original monoenergetic equations permits analysis of contactors operating in orbit-limited conditions. Besides that, the theory predicts that, only for plasma emissions above certain threshold current a presheath/double layer/core structure for the potential is formed (the core mode), while for emissions below that threshold, a plasma contactor behaves exactly as a positive-ion emitter with a presheath/sheath structure (the no-core mode). Ion emitters are studied as a particular case. Emphasis is placed on obtaining dimensionless charts and approximate asymptotic laws of the current-voltage characteristic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A possible approach to the synchronization of chaotic circuits is reported. It is based on an Optically Programmable Logic Cell and the signals are fully digital. A method to study the characteristics of the obtained chaos is reported as well as a new technique to compare the obtained chaos from an emitter and a receiver. This technique allows the synchronization of chaotic signals. The signals received at the receiver, composed by the addition of information and chaotic signals, are compared with the chaos generated there and a pure information signal can be detected. Its application to cryptography in Optical Communications comes directly from these properties. The model here presented is based on a computer simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protecting signals is one of the main tasks in information transmission. A large number of different methods have been employed since many centuries ago. Most of them have been based on the use of certain signal added to the original one. When the composed signal is received, if the added signal is known, the initial information may be obtained. The main problem is the type of masking signal employed. One possibility is the use of chaotic signals, but they have a first strong limitation: the need to synchronize emitter and receiver. Optical communications systems, based on chaotic signals, have been proposed in a large number of papers. Moreover, because most of the communication systems are digital and conventional chaos generators are analogue, a conversion analogue-digital is needed. In this paper we will report a new system where the digital chaos is obtained from an optically programmable logic structure. This structure has been employed by the authors in optical computing and some previous results in chaotic signals have been reported. The main advantage of this new system is that an analogue-digital conversion is not needed. Previous works by the authors employed Self-Electrooptical Effect Devices but in this case more conventional structures, as semiconductor laser amplifiers, have been employed. The way to analyze the characteristics of digital chaotic signals will be reported as well as the method to synchronize the chaos generators located in the emitter and in the receiver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type of signals obtained has conditioned chaos analysis tools. Almost in every case, they have analogue characteristics. But in certain cases, a chaotic digital signal is obtained and theses signals need a different approach than conventional analogue ones. The main objective of this paper will be to present some possible approaches to the study of this signals and how information about their characteristics may be obtained in the more straightforward possible way. We have obtained digital chaotic signals from an Optical Logic Cell with some feedback between output and one of the possible control gates. This chaos has been reported in several papers and its characteristics have been employed as a possible method to secure communications and as a way to encryption. In both cases, the influence of some perturbation in the transmission medium gave problems both for the synchronization of chaotic generators at emitter and receiver and for the recovering of information data. A proposed way to analyze the presence of some perturbation is to study the noise contents of transmitted signal and to implement a way to eliminate it. In our present case, the digital signal will be converted to a multilevel one by grouping bits in packets of 8 bits and applying conventional methods of time-frequency analysis to them. The results give information about the change in signals characteristics and hence some information about the noise or perturbations present. Equivalent representations to the phase and to the Feigenbaum diagrams for digital signals are employed in this case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We proposed an optical communications system, based on a digital chaotic signal where the synchronization of chaos was the main objective, in some previous papers. In this paper we will extend this work. A way to add the digital data signal to be transmitted onto the chaotic signal and its correct reception, is the main objective. We report some methods to study the main characteristics of the resulting signal. The main problem with any real system is the presence of some retard between the times than the signal is generated at the emitter at the time when this signal is received. Any system using chaotic signals as a method to encrypt need to have the same characteristics in emitter and receiver. It is because that, this control of time is needed. A method to control, in real time the chaotic signals, is reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. One of the first issues to be considered in the development of this structure will be the strategy to create the silicon emitter of the bottom subcell. In this study, we explore the possibility of forming the silicon emitter by phosphorus diffusion (i.e. exposing the wafer to PH3 in a MOVPE reactor) and still obtain good surface morphologies to achieve a successful III-V heteroepitaxy as occurs in conventional III-V on germanium solar cell technology. Consequently, we explore the parameter space (PH3 partial pressure, time and temperature) that is needed to create optimized emitter designs and assess the impact of such treatments on surface morphology using atomic force microscopy. Although a strong degradation of surface morphology caused by prolonged exposure of silicon to PH3 is corroborated, it is also shown that subsequent anneals under H-2 can recover silicon surface morphology and minimize its RMS roughness and the presence of pits and spikes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy conversion in solar cells incorporating ZnTeO base layers is presented. The ZnTeO base layers incorporate intermediate electronic states located approximately 0.4eV below the conduction band edge as a result of the substitution of O in Te sites in the ZnTe lattice. Cells with ZnTeO base layers demonstrate optical response at energies lower than the ZnTe bandedge, a feature that is absent in reference cells with ZnTe base layers. Quantum efficiency is significantly improved with the incorporation of ZnSe emitter/window layers and transition from growth on GaAs substrates to GaSb substrates with a near lattice match to ZnTe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a practical implementation of a solar thermophotovoltaic (TPV) system. The system presented in this paper comprises a sunlight concentrator system, a cylindrical cup-shaped absorber/emitter (made of tungsten coated with HfO2), and an hexagonal-shaped water-cooled TPV generator comprising 24 germanium TPV cells, which is surrounding the cylindrical absorber/emitter. This paper focuses on the development of shingled TPV cell arrays, the characterization of the sunlight concentrator system, the estimation of the temperature achieved by the cylindrical emitters operated under concentrated sunlight, and the evaluation of the full system performance under real outdoor irradiance conditions. From the system characterization, we have measured short-circuit current densities up to 0.95 A/cm2, electric power densities of 67 mW/cm2, and a global conversion efficiency of about 0.8%. To our knowledge, this is the first overall solar-to-electricity efficiency reported for a complete solar thermophotovoltaic system. The very low efficiency is mainly due to the overheating of the cells (up to 120 °C) and to the high optical concentrator losses, which prevent the achievement of the optimum emitter temperature. The loss analysis shows that by improving both aspects, efficiencies above 5% could be achievable in the very short term and efficiencies above 10% could be achieved with further improvements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

n this paper, we present a theoretical model based on the detailed balance theory of solar thermophotovoltaic systems comprising multijunction photovoltaic cells, a sunlight concentrator and spectrally selective surfaces. The full system has been defined by means of 2n + 8 variables (being n the number of sub-cells of the multijunction cell). These variables are as follows: the sunlight concentration factor, the absorber cut-off energy, the emitter-to-absorber area ratio, the emitter cut-off energy, the band-gap energy(ies) and voltage(s) of the sub-cells, the reflectivity of the cells' back-side reflector, the emitter-to-cell and cell-to-cell view factors and the emitter-to-cell area ratio. We have used this model for carrying out a multi-variable system optimization by means of a multidimensional direct-search algorithm. This analysis allows to find the set of system variables whose combined effects results in the maximum overall system efficiency. From this analysis, we have seen that multijunction cells are excellent candidates to enhance the system efficiency and the electrical power density. Particularly, multijunction cells report great benefits for systems with a notable presence of optical losses, which are unavoidable in practical systems. Also, we have seen that the use of spectrally selective absorbers, rather than black-body absorbers, allows to achieve higher system efficiencies for both lower concentration and lower emitter-to-absorber area ratio. Finally, we have seen that sun-to-electricity conversion efficiencies above 30% and electrical power densities above 50 W/cm2 are achievable for this kind of systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion beam therapy is a valuable method for the treatment of deep-seated and radio-resistant tumors thanks to the favorable depth-dose distribution characterized by the Bragg peak. Hadrontherapy facilities take advantage of the specific ion range, resulting in a highly conformal dose in the target volume, while the dose in critical organs is reduced as compared to photon therapy. The necessity to monitor the delivery precision, i.e. the ion range, is unquestionable, thus different approaches have been investigated, such as the detection of prompt photons or annihilation photons of positron emitter nuclei created during the therapeutic treatment. Based on the measurement of the induced β+ activity, our group has developed various in-beam PET prototypes: the one under test is composed by two planar detector heads, each one consisting of four modules with a total active area of 10 × 10 cm2. A single detector module is made of a LYSO crystal matrix coupled to a position sensitive photomultiplier and is read-out by dedicated frontend electronics. A preliminary data taking was performed at the Italian National Centre for Oncological Hadron Therapy (CNAO, Pavia), using proton beams in the energy range of 93–112 MeV impinging on a plastic phantom. The measured activity profiles are presented and compared with the simulated ones based on the Monte Carlo FLUKA package.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arrays of coherently driven photomixers with antenna (antenna emitter arrays, AEAs) have been evaluated as a possibility to overcome the power limitations of individual conventional photomixers with antenna (?antenna emitters?, AEs) for the generation of continuous-wave (CW) THz radiation. In this paper, ?large area emitters? (LAEs) are proposed as an alternative approach, and compared with AEAs. In this antenna-free new scheme of photomixing, the THz radiation originates directly from the acceleration of photo-induced charge carriers generated within a large semiconductor area. The quasi-continuous distribution of emitting elements corresponds to a high-density array and results in favorable radiation profiles without side lobes. Moreover, the achievable THz power is expected to outnumber even large AEAs. Last not least, the technological challenge of fabricating LAEs appears to be significantly less demanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wide experimental evidence of the phosphorus diffusion gettering beneficial effect on solar grade silicon is found by measuring electron effective lifetime and interstitial iron concentration in as-grown and post processed samples from two ingots of upgraded metallurgical grade silicon produced by Ferrosolar. Results after two different P-diffusion processes are compared: P emitter diffusion at 850ºC followed by fast cool-down (called “standard process”) or followed by slow cool-down (called “extended process”). It is shown that final lifetimes of this low cost material are in the range of those obtained with conventional material. The extended process can be beneficial for wafers with specific initial distribution and concentration of iron, e.g. materials with high concentration of big Fe precipitates, while for other cases the standard process is enough efficient. An analysis based on the comparison of measured lifetime and dissolved iron concentration with theoretical calculations helps to infer the initial iron distribution and concentration, and according to that, choose the more effective type of gettering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid State Lasers (SSL) have been used in microelectronic and photovoltaic (PV) industry for decades but, currently, laser technology appears as a key enabling technology to improve efficiency and to reduce production costs in high efficiency solar cells fabrication. Moreover, the fact that the interaction between the laser radiation and the device is normally localized and restricted to a controlled volume makes SSL a tool of choice for the implementation of low temperature concepts in PV industry. Specifically, SSL are ideally suited to improve the electrical performance of the contacts further improving the efficiency of these devices. Advanced concepts based on standard laser firing or advanced laser doping techniques are optimal solutions for the back contact of a significant number of structures of growing interest in the c-Si PV industry, and a number of solutions has been proposed as well for emitter formation, to reduce the metallization optical losses or even to remove completely the contacts from the front part of the cell. In this work we present our more recent results of SSL applications for contact optimization in c-Si solar cell technology, including applications on low temperature processes demanding devices, like heterojunction solar cells.