866 resultados para Synthesis of Nitrones
Resumo:
Several types of alumina were synthesized from sodium aluminate (NaAlO2) by precipitation with sulfuric acid (H2SO4) and subsequently calcination at 500 degrees C to obtain gamma-Al2O3. The precursor aluminate was derived from aluminum scrap. The various gamma-Al2O3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption-desorption of N-2 (S-BET) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al2O3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m(2) g(-1)) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Twenty-three naphthoimidazoles and six naphthoxazoles were synthesised and evaluated against susceptible and rifampicin- and isoniazid-resistant strains of Mycobacterium tuberculosis. Among all the compounds evaluated, fourteen presented MIC values in the range of 0.78 to 6.25 mu g/mL against susceptible and resistant strains of M. tuberculosis, Five structures were solved by X-ray crystallographic analysis. These substances are promising antimycobacterial prototypes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This article describes the Diels-Alder reaction between methyl thiocinnamates, substituted at the para position by electron-donating and electron-withdrawing groups, with cyclopentadiene in the presence of catechol boron bromide (CBB) as a Lewis acid catalyst. The adduct configuration was confirmed by H-1 NMR coupling constants and single-crystal x-ray diffraction. Total endo stereoselectivity was observed in all reactions and was attributed to the effective secondary interaction between the boron atom and the incipient double bond in the norbonene resulting from the planar geometry of the catalyst. C-13 NMR chemical shifts of the coordinated dienophile carbonyl carbons with CBB compared to those of the non coordinated thiocinammates suggest a strong complexation with the catalyst.
Resumo:
This work describes the ultrasound-assisted synthesis of saturated aliphatic esters from synthetic aliphatic acids and either methanol or ethanol. The products were isolated in good yields after short reaction times under mild conditions. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
We report herein the synthesis and trypanocidal profile of new (E)-cinnamic N-acylhydrazones (NAHs) designed by exploiting molecular hybridization between the potent cruzain inhibitors (E)-1-(benzo[d] 11,3)dioxol-5-yl)-3-(4-bromophenyl)prop-2-en-1-one and (E)-3-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)-7-methoxy-2-naphthohydrazide. These derivatives were evaluated against both amastigote and trypomastigote forms of Trypanosoma cruzi and lead us to identify two compounds that were approximately two times more active than the reference drug, benznidazole, and with good cytotoxic index. Although designed as cruzain inhibitors, the weak potency displayed by the best cinnamyl NAH derivatives indicated that another mechanism of action was likely responsible for their trypanocide action. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The synthesis and characterization methods of metal nanoparticles (NPs) have advanced greatly in the last few decades, allowing an increasing understanding of structure-property-performance relationships. However, the role played by the ligands used as stabilizers for metal NPs synthesis or for NPs immobilization on solid supports has been underestimated. Here, we highlight some recent progress in the preparation of supported metal NPs with the assistance of ligands in solution or grafted on solid supports, a modified deposition-reduction method, with special attention to the effects on NPs size, metal-support interactions and, more importantly, catalytic activities. After presenting the general strategies in metal NP synthesis assisted by ligands grafted on solid supports, we highlight some recent progress in the deposition of pre-formed colloidal NPs on functionalized solids. Another important aspect that will be reviewed is related to the separation and recovery of NPs. Finally, we will outline our personal understanding and perspectives on the use of supported metal NPs prepared through ligand-assisted methods.
Resumo:
The history of the quinine synthesis can be used as a case study to emphasize that science is influenced by social and historical processes. The first efforts toward the synthesis of this substance, which until recently was the only treatment for malaria, were by Perkin in 1856 when, trying to obtain quinine,,. he synthesized mauveine. Since then, the quest for the total synthesis of quinine involved several characters in a web of controversies. A major step in this process was made in 1918 by Rabe and Kindler, who proposed the synthesis of quinine from quinotoxine. Twenty-six years later, after obtaining the total synthesis of quinotoxine, Woodward and Doering announced the total synthesis of quinine. However, the lack of experimental details about Rabe and Kindler's process, associated with Woodward and Doering's failure to reproduce it, raised a series of doubts about the synthesis. Stork and colleagues questioned the veracity of the experimental data and even the scientific reputation of the involved researchers. Doubts remained alive until 2008, when Williams and Smith reported, not without reservations, the reproducibility of Rabe and Kindler's protocol. The scientific knowledge as a social and historical development, its legitimating process, and the absence of neutrality in science constitute aspects that can be discussed from this case study, providing significant contributions to science education, in particular, to the initial or continued training of chemistry teachers.
Resumo:
MoritaBaylisHillman derivatives have been extensively investigated as intermediates in the preparation of important classes of compounds. However, there are intrinsic limitations regarding the structure of the Michael electrophile acceptors, the aldehydes, and the catalysts. Therefore, this transformation has several drawbacks, including, for example, its long reaction times. Herein we present a simple, general, fast, and high-yielding protocol for the one-pot synthesis of MoritaBaylisHillman derivatives. Our approach is driven by a lithium selenolate Michael/aldol operation with concomitant O-functionalization/selenoxide elimination cascade sequences.
Resumo:
Background Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways.
Resumo:
Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, α-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time.
Resumo:
CO(15NH2)2 enriched with the stable isotope 15N was synthesized based on a reaction involving CO, 15NH3, and S in the presence of CH3OH. The method differs from the industrial method; a stainless steel reactor internally lined with polytetrafluoroethylene (PTFE) was used in a discontinuous process under low pressure and temperature. The yield of the synthesis was evaluated as a function of the parameters: the amount of reagents, reaction time, addition of H2S, liquid solution and reaction temperature. The results showed that under optimum conditions (1.36, 4.01, and 4.48 g of 15NH3, CO, and S, respectively, 40 ml CH3OH, 40 mg H2S, 100 ºC and 120 min of reaction) 1.82 g (yield 76.5%) of the compound was obtained per batch. The synthesized CO(15NH2)2 contained 46.2% N, 0.55% biuret, melting point of 132.55 ºC and did not exhibit isotopic fractionation. The production cost of CO(15NH2)2 with 90.0 at. % 15N was US$ 238.60 per gram.
Resumo:
We report on the formation of self-assembled meso-tetrakis (p-sulfonatofenyl) porphyrin (H2 TPP'S POT. 4-''IND. 4') tubes stabilized by gold nanoparticles (NPs) in basic solution and on their spectroscopic chareterization. The role of the gold NPs in the aggregation dynamics of free-base sulfonated porphyrin (H2TPP'S POT. 4-''IND. 4') is also investigated. The direct conjugation of the gold NPs to the H2TPPS4 molecule quenches the fluorescence intensity, while absorption peaks are blue-shifted, indicating predominant H-type aggregation. It is observed that porphyrin molecules adsorbed on the surface of the gold NP interact and form tubes of maximum diameter ∼1.5 μm and length >100 μm. Steady-state and time-resolved spectroscopic techniques confirm nonradiative energy transfer from porphyrin to gold NP.
Resumo:
C2-Symmetrical, enantiopure 2,6-di[1-(1-aziridinyl)alkyl]pyridines (DIAZAPs) were prepared by a high-yielding, three-step sequence starting from 2,6-pyridinedicarbaldehyde and (S)-valinol or (S)-phenylglycinol. The new compounds were tested as ligands in palladium-catalyzed allylation of carbanions in different solvents. Almost quantitative yield and up to 99% enantiomeric excess were obtained in the reactions of the enolates derived from malonate, phenyl- and benzylmalonate dimethyl esters with 1,3-diphenyl-2-propenyl ethyl carbonate. Asymmetric synthesis of 2-(2-pyridyl)aziridines from chiral 2-pyridineimines bearing a stereogenic center at the nitrogen atom was development. The envisioned route involves the addition of chloromethyllithium to the imine derived from 2-pyridinealdehyde and (S)-valinol, protected as O-trimethylsilyl ether. The analogous reaction performed on the imine derived from (S)-valine methyl ester gave the product containing the aziridine ring as well as the α-chloro ketone group coming from the attack of chloromethyllithium to the ester function. Other stereogenic alkyl substituents at nitrogen gave less satisfactory results. Moreover, the aziridination protocol did not work on other aromatic imines, e.g. 3-pyridineimine and benzaldimine, which are not capable of bidentate chelation. The N-substituent could not be removed, but aziridine underwent ring-opening by attack of nitrogen, sulfur, and oxygen nucleophiles. Complete or prevalent regioselectivity was obtained using cerium trichloride heptahydrate as a catalyst. In some cases, the N-substituent could be removed by an oxidative protocol. The addition of organometallic (lithium, magnesium, zinc) reagents to 2-pyrroleimines derived from (S)-valinol and (S)-phenylglycinol gave the N-substituted-1-(2-pyrrolyl)alkylamines with high yields and diastereoselectivities. The (S,S)-diastereomers were useful intermediates for the preparation of enantiopure 1-[1-(2-pyrrolyl)alkyl]aziridines by routine cyclization of the β-aminoalcohol moiety and of (S)-N-benzoyl 1-[1-(2-pyrrolyl)alkyl]amines and their N-substituted derivatives by oxidative cleavage of the chiral auxiliary. 1-Allyl-2-pyrroleimines obtained from (S)-phenylglycinol and (S)-valinol underwent highly diastereoselective addition of allylmetal reagents, used in excess amounts, to give the corresponding secondary amines with concomitant allyl to 1-propenyl isomerisation of the 1-pyrrole substituent. Protection of the 2-aminoalcohol moiety as oxazolidinone, amide or Boc derivate followed by ring closing metathesis of the alkene groups gave the unsaturated bicyclic compound, whose hydrogenation afforded the indolizidine derivative as a mixture of separable diastereomers. The absolute configuration of the main diastereomer was assessed by X-ray crystallographic analysis.